Structure Functions and Low-x Working Group Summary

Results from FNAL, RHIC & JLAB and new techniques for data analysis

Claire Gwenlan, Vladimir Chekelian, Robert Thorne

- 25 Talks + 5 Joint with EW + 4 Joint with HF
- 10 talks covered here, on results from fixed target and hadron colliders, plus new techniques for determining PDFs

Overview

- Constraints on PDFs from Tevatron Measurements
 - electroweak (W asymmetry, W/Z cross sections)
 - inclusive jet production
- Fast inclusion of Jet Data in PDF Fits
 - example: LHC inclusive jet production
- Strange Asymmetry Results from NuTeV
- Results from JLAB
 - EMC effect in light nuclei from E03-103
 - duality in meson electroproduction from E00-108
- Forward Pion Production in d+Au Collisions at RICH
- New Techniques for the Determination of PDFs
 - neural networks
 - self organising maps
 - bayesian approach

Constraints on PDFs from Tevatron @ FNAL (+ a tiny bit on LHC)

W charge asymmetry at the Tevatron

Cigdem Issever (CDF), Miko Voutilainen (D0)

- Probes d/u ratio at high-x
- Unknown p_z from $v \rightarrow$ use lepton asymmetry
- CDF (W \rightarrow ev):
 - higher E_T cut has greater d/u sensitivity
 - to be included in future PDFs
- D0 (W $\rightarrow \mu \nu$)
 - Statistics limited → will improve

$$A = \frac{d\sigma(W^+)/dy - d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy} \approx \frac{d}{u}$$

W charge asymmetry at the Tevatron

Cigdem Issever (CDF)

- CDF have developed new method to measure W asymmetry directly
 - Greatly improved sensitivity
 - Results on the way soon !!!

Unfortunately no time to discuss:

 Ratio of central-to-forward visible W cross section (CDF)

σ_{VIS} (central)/ σ_{VIS} (forward) = 0.925 ± 0.033

 Z→ττ and Z→μμ cross section (CDF)

All these measurements could help constrain the proton PDFs

Jet Production and the High-x Gluon

An Historical Warning ...

Tevatron Run-I jet data initially taken as possible signs of new physics ...

Jet Production and the High-x Gluon

An Historical Warning ...

Tevatron Run-I jet data initially taken as possible signs of new physics ...

... then PDF uncertainties considered

Dominant contribution from high-x gluon

- Not a well known quantity !!!
- If knowledge not improved then potentially severe impact on "high scale" (new) physics at the Tevatron/LHC

0.2

0.3

0.4

0.5

0.6

Jet data directly sensitive to high-x gluon

Inclusive Jet Production at CDF

Cigdem Issever (CDF); [also presented by Olga Norniella (CDF) - HFS group]

CDF Run-II:

- 0.98 fb⁻¹ k_T algorithm:
 - $p_T \ge 54 \text{ GeV}$
 - in 5 bins of rapidity
 - Note forward rapidity bin, where experimental uncerts smaller than PDF uncerts.
- 1.04 fb⁻¹ mid-point algorithm:
 - 61 < p_T < 620 GeV</p>
 - 0.1 < |y| < 0.7

also available...(not shown here)

- Different rapidities important:
 - More stringent PDF constraints
 - New physics is central, while
 PDF effects show up at all η

Data corrected to hadron level

Inclusive Jet Production at D0

Miko Voutilainen (D0)

D0 Run-II:

- 0.8 fb⁻¹ Run-II cone alg.:
 - 50 < p_T < 670 GeV</p>
 - |y| < 0.4, 0.4 < |y| < 0.8
- Measurement soon to be extended to be more rapidity regions...(?)
- Uncertainties on data same order as PDF uncertainties
 - Power to constrain PDFs

Inclusion of Jets in PDF Fits at NLO

Dan Clements (ATLAS)

- Full NLO jet calculation takes several hours → prohibitively slow in a QCD fit !!!
- Global analyses (CTEQ, MRST) have used LO predictions + k-factors

ALTERNATIVE → "GRID TECHNIQUE"

- Run NLO QCD program and store subprocess cross section "weights" in "grid"
 Basic technique already used at HERA
- More sophisticated grid implementation recently developed* [T. Carli, G. Salam, F. Siegert]
 - Grid in (y_1, y_2, τ) where :
 - $y_i(x)=\ln 1/x_i$; $\tau(Q^2) = \ln \ln Q^2/\Lambda^2$
 - Higher order interpolation when filling grid
 - increased accuracy without costing CPU
 - Currently designed to work with NLOJET++

* also see talk about a similar project - FASTNLO (Markus Wobisch - HFS session)

Inclusion of Jets in PDF Fits at NLO

Dan Clements (ATLAS)

- Full NLO jet calculation takes several hours → prohibitively slow in a QCD fit !!!
- Global analyses (CTEQ, MRST) have used LO predictions + k-factors

ALTERNATIVE → "GRID TECHNIQUE"

- Run NLO QCD program and store subprocess cross section "weights" in "grid"
 Basic technique already used at HERA
- More sophisticated grid implementation recently developed* [T. Carli, G. Salam, F. Siegert]
 - Grid in (y_1, y_2, τ) where :
 - $y_i(x)=\ln 1/x_i$; $\tau(Q^2) = \ln \ln Q^2/\Lambda^2$
 - Higher order interpolation when filling grid
 - increased accuracy without costing CPU
 - Currently designed to work with NLOJET++
- Grid technique able to reproduce original NLOJET prediction to excellent accuracy

Implementation of grids in a QCD fit

Dan Clements (ATLAS)

example: LHC inclusive jets

- generated grids:
 - Inclusive jets @ 14 TeV
 - 100 GeV < p_T < 3 TeV
 - 0 < η < 1, 1 < η < 2, 2 < η < 3</p>
- JETRAD "pseudo-data"
 - 10 fb⁻¹ (1 year low lumi)
 - 10% and 5% (uncorr.) systematics (more realistic study to come)
 included in ZEUS fit framework
- first results promising

Final Results on the Strange Asymmetry at NuTeV @ FNAL

$sin^2\theta_w$ and the Strange Sea Asymmetry

David Mason (NuTeV)

• NuTeV measured:
$$R^- = \frac{\sigma_{NC}^v - \sigma_{NC}^v}{\sigma_{CC}^v - \sigma_{CC}^{\overline{v}}}$$

• ... and extracted: $\sin^2\theta_W = 0.22773 \pm 0.00135 \text{ (stat.)} \pm 0.00093 \text{ (syst.)}$ c.f. world average: $\sin^2\theta_W = 0.223 \text{ (}3\sigma \text{ effect)}$

This assumed s(x) = sbar(x)

- R⁻ correction from asymmetric strange sea proportional to: $S^- = \int s(x) \overline{s}(x) dx$
- S⁻ = 0.0068 required to bring to world average

NuTeV can directly measure S⁻ through CC ν N

- \rightarrow clear signal of opposite sign dimuon events
- Direct probe of strange sea
- Sign selected beam \rightarrow s(x), sbar(x) independently
- Can also measure charm mass

Dimuon cross sections @ NuTeV

David Mason (NuTeV)

Strange Asymmetry Results @ NuTeV

David Mason (NuTeV)

 $S^- = +0.00196 \pm 0.00046(stat.) \pm 0.00045(syst.) \pm 0.00128(external)$

 $m_c = 1.41 \pm 0.10(stat.) \pm 0.08(syst.) \pm 0.12(external)GeV$

^{*} also see back-up slide on crossing-point study

Jefferson Laboratory (JLAB)

EMC effect in light nuclei (JLAB)

Jason Seely (JLAB)

- EMC effect well known BUT mostly studied in "heavy nuclei" e.g. C, Fe, Cu, Au, ...
- Data from light nuclear targets
 - 4He: SLAC
 - 3He: HERMES (but only x < 0.4)
 - 3H: none

E03-103 experiment at JLAB:

- 5.77 GeV electron beams
- Inclusive e- scattering cross section on:
 - 4He to greater precision
 - 3He at higher x than previously

EMC effect in light nuclei (JLAB)

Jason Seely (JLAB)

- EMC effect well known BUT mostly studied in "heavy nuclei" e.g. C, Fe, Cu, Au, ...
- Data from light nuclear targets
 - 4He: SLAC
 - 3He: HERMES (but only x < 0.4)</p>
 - 3H: none

E03-103 experiment at JLAB:

- 5.77 GeV electron beams
- Inclusive e- scattering cross section on:
 - 4He to greater precision
 - 3He at higher x than previously
- Results:
 - 4He: agrees well with SLAC
 - : EMC effect as big as in C
 - 3He: first measurement for x > 0.4

N.B. size of 3He dip may change - dependent on proton excess corrections (work still in progress)

Duality in Meson Electroproduction (JLAB)

Rolf Ent (JLAB)

Searching for Gluon Saturation in STAR @ RHIC

Forward Neutral Pion Suppression in d+Au collisions at RICH

Carl Gagliardi (STAR)

 At sufficiently small x, gluon splitting expected to become balanced by recombination as gluons overlap → GLUON SATURATION

Searching for Saturation

- Gluon density in nuclei ~ $A^{1/3}$
- Saturation may set in at forward rapidity

Study forward pion production in p(d)+Au compared to p+p (and watch out for suppression !!!)

d+Au Yield R_{dAu} and Rapidity Correlations

Carl Gagliardi (STAR)

- d+Au yield, $R_{dAu} = 1/(2*197) \sigma_{dAu}/\sigma_{pp}$ shows significant η dependence
 - pQCD calculations overestimate data

d+Au Yield R_{dAu} and Rapidity Correlations

Carl Gagliardi (STAR)

- d+Au yield, $R_{dAu} = 1/(2*197) \sigma_{dAu}/\sigma_{pp}$ shows significant η dependence
 - pQCD calculations overestimate data

 π^{0} : $|<\eta>| = 4.0$ h[±]: $|\eta|<0.75$; $p_{T} > 0.5$ GeV

Suppression in d+Au at low x and p_T
 Onset of saturation ?!?

STAR installing a forward meson spectrometer for Run 7 to elucidate further

Alternative techniques for the determination of PDFs

Neural Network Approach

Andrea Piccionne (NNPDF)

- neural network:
 - highly **non-linear mapping** between input and output patterns as a function of its parameters
 - "bias free" parameterisation
 - suitable tool for incompatible datasets and to find incompatibilities within single experiment

Results on Non-Singlet Quark Dist.

- experimental data: BCDMS, NMC
- cuts: Q² > 3 GeV², W² > 6.25 GeV²
- ZM-VFN scheme
- Traditional global fits incompatible within errors at low x
- NNPDF covers the differences

Results on singlet distributions coming soon!?

Self-Organising Maps

Simonetta Liuti (SOMPDF)

- A **type** of neural network
 - Differs from NNPDF neural network in the details of the architecture
- Preliminary results on F₂ and gluon PDF using DIS data

Bayesian Approach to PDF Fitting

Glen Cowan

Bayes Theorem: how should our belief be updated in light of the data

 $p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$

A full Bayesian PDF analysis could involve:

· the usual 10-20 PDF parameters

· a bias parameter for each systematic

· more parameters to quantify model uncertainties

• ...

as well as a meaningful assignment of priors and finally an integration over the entire parameter space to extract the posterior probability for a parameter of interest, e.g. a predicted cross section (ongoing effort)

Summary

- New electroweak and inclusive jet measurements from Tevatron
 - should prove useful in constraining PDFs in future global fits
- Final strange sea asymmetry measurement from NuTeV
 - **POSITIVE**, direction needed for $\sin^2\theta_W$ agreement with world average

 $S^- = +0.00196 \pm 0.00046(stat.) \pm 0.00045(syst.) \pm 0.00128(external)$

- New measurement from JLAB of EMC effect in 3He/4He
 - Higher precision + first measurement of 3He for x > 0.4
 - Should prove useful in discriminating between models
- Forward pion suppression in d+Au collisions at RHIC
 - Onset of gluon saturation !? Future runs should elucidate...
- Several different approaches for determining PDFs being developed/used
 - Neural Network, Self-Organising Maps, Bayesian Approach
 - Look forward to future results in these areas

Crossing Point Study

David Mason (NuTeV)

- crossing point at x₀=0.004
- but models want higher x₀
- as x_0 increases, asymmetry decreases and χ^2 increased
- difficult to accommodate measured asymmetry with high value of x₀

