Structure Functions and low xSummary - Theory

Robert Thorne

April 23, 2006

University College London

Royal Society Research Fellow

DIS06 Summary

Main topics in working group

Updates in (semi) global determinations of pdfs – Guffanti, Alekhin, MRST, CTEQ (Tung) and Kumano (nuclear partons distributions).

Ever increasing sophistication (complication?) of theory.

Implementation of new heavy flavour prescriptions and/or NNLO corrections, new data in fits. Difficult to disentangle issue of NNLO and heavy flavours.

Lots of recent developments in small-x resummations. Hopefully beginning of detailed understanding and phenomenology.

Things get more involved in very small x region with non-linear effects. Saturation scale moving ever smaller?

Where do we need to stop?

Importance of $F_L(x, Q^2)$ for theoretical understanding of QCD particularly at small x.

Guffanti performed NNLO fit for non-singlet parton distributions $u_v(x, Q^2)$ and $d_v(x, Q^2)$ by fitting to $F_2^{p,d}(x, Q^2), x > 0.3$ (too low?) and $F_2^p - F_2^d, x < 0.3$.

Aim for very accurate results.Generally successful.

$\alpha_s(M_Z^2)$	expt	theory
0.1153	± 0.0020	± 0.0030
0.1143	± 0.0014	± 0.0009
0.1166	± 0.0013	
0.1153	± 0.0063	
0 1194	+0.0019	
0.1134	-0.0021	
0.1182	± 0.0027	
	$\begin{array}{c} \alpha_s(M_Z^2) \\ \hline \\ 0.1153 \\ 0.1143 \\ 0.1166 \\ 0.1153 \\ \hline \\ 0.1134 \\ \hline \\ 0.1182 \end{array}$	$\begin{array}{c} \alpha_s(M_Z^2) & {\rm expt} \\ \\ 0.1153 & \pm 0.0020 \\ 0.1143 & \pm 0.0014 \\ 0.1166 & \pm 0.0013 \\ 0.1153 & \pm 0.0063 \\ \\ \hline 0.1134 & \frac{+0.0019}{-0.0021} \\ \hline 0.1182 & \pm 0.0027 \end{array}$

α_s determination

PDF moments

[f	n	BBG(NNLO)	MRST04	A02
ſ	u_v	2	0.2986 ± 0.0029	0.285	0.304
		3	0.0871 ± 0.0011	0.082	0.087
		4	0.0333 ± 0.0005	0.032	0.033
ſ	d_v	2	0.1239 ± 0.0026	0.115	0.120
		3	0.0315 ± 0.0008	0.028	0.028
		4	0.0105 ± 0.0004	0.009	0.010
ſ	$u_v - d_v$	2	0.1747 ± 0.0039	0.171	0.184
		3	0.0556 ± 0.0014	0.055	0.059
		4	0.0228 ± 0.0007	0.022	0.024

Comparison with lattice results

BBG	Lattice	
N3LO - $\Lambda_{QCD}^{(4)}$ MeV	Alpha Collaboration - $\Lambda_{QCD}^{(2)}$ MeV	
234 ± 26	$245\pm16\pm16$	

[M. Della Morte, et al., Nucl. Phys. B713, (2005), 378]

		BBG	Lattice
f	n	NNLO	QCDSF
$u_v - d_v$	2	0.1747 ± 0.0039	0.191 ± 0.012

[G. Schierholz, private communication]

12/17

DIS06

NNLO analysis ...

Global Fits

Alekhin includes E605 Drell-Yan data and E866 Drell-Yan ratio data in structure function fit.

Fit with no problems. Improves accuracy on high-x sea and gives first real constraint on $\overline{u} - \overline{d}$.

In fact using $\Delta \chi^2 = 1$ uncertainties now very small.

Alekhin working at NNLO and approx $N^{3}LO$.

Theoretical input to the global DIS fit

- The massless NNLO QCD corrections for the light quarks and gluons (splitting and coefficient functions.
- Account of the heavy quarks up to $\mathcal{O}(\alpha_S^2)$ by Laenen-Riemersma-Smith-van Neerven.
- Account of the target-mass corrections by Georgi-Politzer, correction for the Fermimotion in deuterium, and the twist 4 terms.
- The massless $\mathcal{O}(\alpha_S^3)$ corrections to the coefficient functions

I do not agree with definition of NNLO regarding charm and bottom. Last step only part of a full N³LO correction – not necessarily indicative except at high x. Claims reasonable stability down to $Q^2 = 0.5 \text{GeV}^2$ for $0.06 \le x \le 0.12$.

Issues with **new data**. Most interest in NuTeV structure function data. Larger than CCFR data at high x. Useful for flavour separation. Rely on nuclear correction. A determination of these was reported by Kumano.

CTEQ – Tung find NuTeV data difficult to fit.

Can Nuclear Corrections Help?

1.4 No Nuclear Correction 1.3 NMC Nuclear Correction Kulagin/Petti Nuclear Correction 1.2 **Mean Data/Theory** 1.1 Ĩ ¥ 0.9 Ä **0.8** NuTeV Neutrino Data, NLO QCD, CTEQ6.1M 0.7 0.6[□]0 0.1 0.2 0.7 0.3 0.6 0.8 0.5 0.4 **Parton X**

• For each x, data are combined and errors are weighted;

•See a systematic χ dependent deviation that cannot be reduced substantially by nuclear correction models. MRST – previous nuclear correction R(x) obtained from EMC effect clearly ruled out.

Try $R^{eff} = 1 + A * (R - 1)$. $\rightarrow A = 0.2$.

Fit then good.

Partons in region of high correction already well-determined. Nuclear correction different for ν than for charged leptons?

Important information in the region x < 0.3 - not too sensitive to corrections, but problem caused much interest. Conclusion not clear.

However CHORUS data more similar to CCFR.

CTEQ include all HERA data – fit directly to cross-sections for first time. Requires $F_L(x, Q^2)$ at high y. No NNLO?

ZEUS 96-97 data show the same effects

Also implement new heavy flavour prescription (HFS summary). Overshoot raw high-y data. Systematic errors remove $F_L(x, Q^2)$ turnover?

MRST have implemented full NNLO VFNS and Drell-Yan cross-sections \rightarrow (provisional) full NNLO partons with uncertainties.

Difference in charm procedure affects gluon compared to approx MRST2004 NNLO fit. Correct heavy flavour treatment vital.

Quality of full fit at NLO $\chi^2 = 2406/2287$ NNLO $\chi^2 = 2366/2287$.

NNLO fairly consistently better than NLO - not for Drell-Yan data.

Definite tendency for $\alpha_S(M_Z^2)$ to go up with all changes.

NLO $\alpha_S(M_Z^2) = 0.121$, NNLO $\alpha_S(M_Z^2) = 0.119$.

Small-x resummations.

Presentation on various ways to include resummations from BFKL equation on top of fixed order expansion.

White – a resummation of $\ln(1/x)$ terms along with running coupling corrections only (RT, 1999).

$$xP_{gg} = \sum_{n} \alpha_{S}^{n} \sum_{m=0}^{n-1} \ln^{n-m-1}(1/x)\beta_{0}^{m}$$

Mainly analytic results with small numerical corrections.

Also quark-gluon splitting P_{qg} etc. and full implementation of heavy flavour VFNS. Full LO resummed partons. Colferai – approach based on Ciafaloni, Colferai, Salam and Stasto best for processes with two hard scales. Also includes running coupling (effects not as explicit) and resummation of collinear singularities.

$$\int_0^\infty dk^2 (k^2)^{-\gamma - 1} K_{BFKL}^n(k^2) = \chi^n(\gamma), \qquad \chi^n(\gamma) \sim \frac{1}{\gamma^{2n+1}}, \quad \frac{1}{(1-\gamma)^{2n+1}}$$

where evolution variable $s/(QQ_0)$, conjugate variable N.

Consideration of changes of evolution variable to s/Q^2 (DIS) and $s/Q_0^2 \rightarrow$ resummation (Salam, 1998)

$$\chi_N^n(\gamma) \sim \frac{1}{(\gamma + N/2)^{n+1}}, \quad \frac{1}{(1 - \gamma + N/2)^{n+1}}$$

Natural calculations in DIS scheme with Q_0 regularization i.e. incoming gluon off-shell, $k^2 = Q_0^2 \neq 0$.

Look at transformation to \overline{MS} scheme – regularization in $4 + 2\epsilon$ dimensions – i.e. how fixed order defined.

Forte – approach of Altarelli, Ball and Forte.

1. Duality - in some limit have

 $\chi(\gamma(N, \alpha_S), \alpha_S) = N, \quad \gamma(\chi(\alpha_S, M), \alpha_S) = M$

i.e. Q^2 evolution and x evolution dual. Not most important issue.

2. Explicit imposition of momentum conservation.

3. Also now include the running of the coupling.

4. Symmetrization, i.e. let $1/M^n \rightarrow 1/(M+N/2)^n$, $1/(1-M)^n \rightarrow 1/(1-M+N/2)^n$ as CCSS.

Overall leads to resummed $P_{gg}(x, Q^2)$.

Plots of P_{gg} for $\alpha_S \sim 0.2$ for Forte (top) and Colferai (bottom). White, RT at NLO similar but dip a bit lower.

Despite lots of differences in approaches. (All include running coupling.) All get dip, then very low x rise in P_{gg} . LO lower than NLO different for Forte

 \rightarrow all agree moderate effects compared to original resummation ideas.

White examines phenomenology, but only at LO in resummation.

Impact factor required for P_{qg} not yet known at NLO.

Better fit than NLO-in- α_S in terms of $dF_2(x,Q^2)/d\ln Q^2$.

Enhancement of evolution too great at small x. Gluon and $F_L(x, Q^2)$ too small at moderate x. Need the full NLO generalization.

Colferai and White both examine improvement to P_{qg} .

Two approaches are qualitatively similar. Contain different higher order information.

White – estimate of NLO corrections to impact factor, coupling resummation.

Colferai – resummation of P_{gg} beyond NLO via collinear resummation.

Both suggest effects of NLO resummation small but significant.

Non-Linear Corrections at very small *x*.

Various discussions on how to improve small-x treatments to include the saturation corrections, and more. Soyez – nonlinear evolution equation in rapidity Y extended to include fluctuations as well as recombination. Opposite sign (generally).

Hatta demonstrated origin of fluctuations via a formal derivation of a Bremsstrahlung Hamiltonian which can be used to give the evolution of n-dipole densities.

Evolution equation for the dipole densities

Dipole number operator
$$D(x,y) \equiv -\frac{1}{g^2 N_c} \rho_{\infty}^a(x) \rho_{\infty}^a(y)$$

Dipole number density

$$\langle D(\boldsymbol{x}, \boldsymbol{y}) \rangle_{\tau} \equiv \int D[\rho] D(\boldsymbol{x}, \boldsymbol{y}) Z_{\tau}[\rho] \approx \frac{1}{2} \Big(n_{\tau}(\boldsymbol{x}, \boldsymbol{y}) + n_{\tau}(\boldsymbol{y}, \boldsymbol{x}) \Big)$$

$$\frac{\partial}{\partial t} n_N = H_{\rm BFKL} n_N$$

Dipole pair density

$$\langle D(x_1,y_1)D(x_2,y_2) \rangle_{\tau} \sim n_N^{(2)}(x_1,y_1;x_2,y_2)$$

$$\begin{array}{c} & & \\ \hline H_{\text{BREM}} & & \\ \hline \partial \tau & n_N^{(2)} = H_{\text{BFKL}} n_N^{(2)} + n_N^{(1)} \\ & & \\$$

Inclusion of fluctuations lead to dispersion about saturation scale Soyez. Move onset of saturation in dipole cross-section considerably downwards.

Describing *F*₂

DSM-SPhT

Kutak modifies LO BFKL equation for non-linear recombination term.

Also inclusion of impact parameter dependence.

Inclusion of high-x effects in gluon evolution (though not in gluon quark impact factor, i.e. effectively P_{qg}).

3. Extended BK-equation for gluon density with impact parameter dependence.

(Kutak, Motyka)

$$f_g(x,k^2,b) = \tilde{f}_g^{(0)}(x,k^2,b) + K_1 \otimes f_g - K_2 \otimes f_g^2 \quad (4)$$

where

$$\begin{split} \tilde{f}_{g}^{(0)}(x,k^{2},b) &= S(b)\frac{\alpha_{s}(k^{2})}{2\pi}\int_{x}^{1}dz P_{gg}(z,b)\frac{x}{z}g(\frac{x}{z},k_{0}^{2}) \\ K_{1}\otimes f_{g} &= 2N_{c}\frac{\alpha_{s}(k^{2})}{2\pi}k^{2}\int_{x}^{1}\frac{dz}{z}\int_{k_{0}^{2}}\frac{dk'^{2}}{k'^{2}} \\ \begin{cases} \frac{f_{g}\left(\frac{x}{z},k'^{2},b\right)\Theta\left(\frac{k^{2}}{z}-k'^{2}\right)-f_{g}\left(\frac{x}{z},k^{2},b\right)}{|k'^{2}-k^{2}|} + \frac{f_{g}\left(\frac{x}{z},k^{2}\right)}{[4k'^{4}+k^{4}]^{\frac{1}{2}}} \end{cases} \\ + \frac{\alpha_{s}(k^{2})}{2\pi}\int_{x}^{1}\frac{dz}{z} \left[\left(zP_{gg}(z,b)-2N_{c}\right)\int_{k_{0}^{2}}^{k^{2}}\frac{dk'^{2}}{k'^{2}}f_{g}\left(\frac{x}{z},k'^{2},b\right)}{S(b) &= \frac{1}{\pi R^{2}}e^{-b^{2}/R^{2}} \end{split}$$

Where $R = 2.8 GeV^{-1}$ and conventional unintegrated gluon density is obtained:

$$f(x,k^2) = \int d^2 b f_g(x,k^2,b)$$
 (5)

Inclusion of impact parameter dependence reduces the effect of the nonlinear term.

Lowers the saturation scale in Q^2 for a given x.

Rough phenomenology – "hardly see effect of saturation" for HERA.

Further NLO corrections likely to reduce this further.

The b dependent saturation scale can be defined as follows:

$$\frac{\partial h(x,k^2,b)}{\partial \log(1/x)} = 0.$$
 (5)

Figure 5:

 $F_L(x, Q^2)$ can be calculated using some variation of all of the above methods \rightarrow much variation.

 $F_L(x, Q^2)$ predicted from the global fit at LO, NLO and NNLO, from a fit which performs a resummation of small-x terms, and from a dipole model type fit.

Implies a measurement of $F_L(x, Q^2)$ over as wide a range of x and Q^2 as possible would be very useful.

Conclusions

Little agreement in *global* fit analyses. Not everyone wants to go to NNLO. Not everyone agrees how to do it in detail. I believe we are now finally at stage where NNLO parton analyses are complete and reliable. Should be done. Work a little better than NLO in general.

Rather similar results coming from groups working on small-x resummations to be used on top of fixed order calculations. Will probably still argue about how results obtained. Effect of resummations moderate until very small x. Empirically can improve fit a little even over NNLO. Resummations NLO at best. Fixed order NLO + NLO resummations (large and small x) better than fixed order NNLO (Tung)?

Progress in nonlinear small-x equations, e.g. fluctuations. To me always seem to be pushing saturation scale lower. Nice if this could match on to higher x better. Usually confined to unknown small x region, missing higher x corrections. (Please do not show data plot where main difference between two competing models is at $x = 0.01, Q^2 = 1000 \text{GeV}^2$. DGLAP must be appropriate here.)

Lots of improvement in how to calculate using different techniques. Not enough idea yet where each approach is applicable/needed. Need better (real) phenomenology and, of course, more useful data.