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Main topics in working group

Updates in (semi) global determinations of pdfs – Guffanti, Alekhin, MRST, CTEQ
(Tung) and Kumano (nuclear partons distributions).

Ever increasing sophistication (complication?) of theory.

Implementation of new heavy flavour prescriptions and/or NNLO corrections, new
data in fits. Difficult to disentangle issue of NNLO and heavy flavours.

Lots of recent developments in small-x resummations. Hopefully beginning of detailed
understanding and phenomenology.

Things get more involved in very small x region with non-linear effects. Saturation
scale moving ever smaller?

Where do we need to stop?

Importance of FL(x,Q2) for theoretical understanding of QCD particularly at small x.
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Guffanti performed NNLO fit for non-singlet parton distributions uv(x,Q2) and

dv(x,Q2) by fitting to F p,d
2 (, x, Q2), x > 0.3 (too low?) and F p

2 − F d
2 , x < 0.3.

Aim for very accurate results.Generally successful.

BBG Non-Singlet Analysis Results

Non-Singlet Analysis
Results - αs, ΛQCD and PDF moments

αs determination

αs(M
2
Z) expt theory

NNLO
MRST03 0.1153 ±0.0020 ±0.0030
A02 0.1143 ±0.0014 ±0.0009
SY01(ep) 0.1166 ±0.0013
SY01(νN) 0.1153 ±0.0063

BBG 0.1134
+0.0019
−0.0021

World Average 0.1182 ±0.0027

PDF moments

f n BBG(NNLO) MRST04 A02

uv 2 0.2986 ± 0.0029 0.285 0.304
3 0.0871 ± 0.0011 0.082 0.087
4 0.0333 ± 0.0005 0.032 0.033

dv 2 0.1239 ± 0.0026 0.115 0.120
3 0.0315 ± 0.0008 0.028 0.028
4 0.0105 ± 0.0004 0.009 0.010

uv − dv 2 0.1747 ± 0.0039 0.171 0.184
3 0.0556 ± 0.0014 0.055 0.059
4 0.0228 ± 0.0007 0.022 0.024

Comparison with lattice results

BBG Lattice

N3LO - Λ
(4)
QCD MeV Alpha Collaboration - Λ

(2)
QCD MeV

234 ± 26 245 ± 16 ± 16

BBG Lattice
f n NNLO QCDSF

uv − dv 2 0.1747 ± 0.0039 0.191 ± 0.012

[M. Della Morte, et al.,Nucl.Phys.B713,(2005),378] [G. Schierholz, private communication]

A. Guffanti (UoE) NNLO analysis ... DIS06 12 / 17
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E866 (pD/pp)

±1σ (fit)
5 GeV<M (GeV)<12.9
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x
2

4.4 GeV<M (GeV)<7.7

Global Fits

Alekhin includes E605 Drell-Yan data
and E866 Drell-Yan ratio data in
structure function fit.

Fit with no problems. Improves accuracy
on high-x sea and gives first real
constraint on ū − d̄.
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In fact using ∆χ2 = 1 uncertainties
now very small.

DIS06 Summary 3



Alekhin working at NNLO and approx N3LO.

Theoretical input to the global DIS fit

● The massless NNLO QCD corrections for the light quarks and gluons (splitting and
coefficient functions.

● Account of the heavy quarks up to O(α2
S) by Laenen-Riemersma-Smith-van

Neerven.

● Account of the target-mass corrections by Georgi-Politzer, correction for the Fermi-
motion in deuterium, and the twist 4 terms.

● The massless O(α3
S) corrections to the coefficient functions

I do not agree with definition of NNLO regarding charm and bottom. Last step only
part of a full N3LO correction – not necessarily indicative except at high x. Claims
reasonable stability down to Q2 = 0.5GeV2 for 0.06 ≤ x ≤ 0.12.
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Issues with new data. Most interest in NuTeV structure function data. Larger than
CCFR data at high x. Useful for flavour separation. Rely on nuclear correction. A
determination of these was reported by Kumano.
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CTEQ – Tung find NuTeV data difficult to fit.

  

Can Nuclear Corrections Help?

•For each x, data are 
combined and errors are 
weighted;

•See a systematic x-
dependent deviation that 
cannot be reduced 
substantially by nuclear 
correction models.
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NuTeV F2
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MRST – previous nuclear correction
R(x) obtained from EMC effect clearly
ruled out.

Try Reff = 1+A∗(R−1). → A = 0.2.

Fit then good.

Partons in region of high correction
already well-determined. Nuclear
correction different for ν than for
charged leptons?

Important information in the region
x < 0.3 - not too sensitive to
corrections, but problem caused much
interest. Conclusion not clear.

However CHORUS data more similar
to CCFR.
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CTEQ include all HERA data – fit directly to cross-sections for first time. Requires
FL(x,Q2) at high y. No NNLO?

  

Where does the General Mass Formalism make 
a difference? Compare with CTEQ6.1M (ZM) 

ZM

Low Q2 bins, of course.

GM

H1 96-97

ZEUS 96-97 data show the same effects 
Also implement new heavy flavour prescription (HFS summary). Overshoot raw high-y
data. Systematic errors remove FL(x,Q2) turnover?
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MRST have implemented full NNLO
VFNS and Drell-Yan cross-sections →

(provisional) full NNLO partons with
uncertainties.

Difference in charm procedure affects
gluon compared to approx MRST2004
NNLO fit. Correct heavy flavour
treatment vital.

Quality of full fit at

NLO χ2 = 2406/2287

NNLO χ2 = 2366/2287.

NNLO fairly consistently better than
NLO - not for Drell-Yan data.

Definite tendency for αS(M2
Z) to go up

with all changes.

NLO αS(M2
Z) = 0.121,

NNLO αS(M2
Z) = 0.119.
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Small-x resummations.

Presentation on various ways to include resummations from BFKL equation on top of
fixed order expansion.

White – a resummation of ln(1/x) terms along with running coupling corrections only
(RT, 1999).

xPgg =
∑

n

αn
S

n−1∑
m=0

lnn−m−1(1/x)βm
0

Mainly analytic results with small numerical corrections.

Also quark-gluon splitting Pqg etc. and full implementation of heavy flavour VFNS.

Full LO resummed partons.
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Colferai – approach based on Ciafaloni, Colferai, Salam and Stasto best for processes
with two hard scales. Also includes running coupling (effects not as explicit) and
resummation of collinear singularities.

∫
∞

0

dk2(k2)−γ−1Kn
BFKL(k2) = χn(γ), χn(γ) ∼

1

γ2n+1
,

1

(1 − γ)2n+1

where evolution variable s/(QQ0), conjugate variable N .

Consideration of changes of evolution variable to s/Q2 (DIS) and s/Q2
0 → resummation

(Salam, 1998)

χn
N(γ) ∼

1

(γ + N/2)n+1
,

1

(1 − γ + N/2)n+1

Natural calculations in DIS scheme with Q0 regularization i.e. incoming gluon off-shell,
k2 = Q2

0 6= 0.

Look at transformation to MS scheme – regularization in 4 + 2ε dimensions – i.e.
how fixed order defined.
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Forte – approach of Altarelli, Ball and Forte.

1. Duality – in some limit have

χ(γ(N,αS), αS) = N, γ(χ(αS,M), αS) = M

i.e. Q2 evolution and x evolution dual. Not most important issue.

2. Explicit imposition of momentum conservation.

3. Also now include the running of the coupling.

4. Symmetrization, i.e. let 1/Mn → 1/(M+N/2)n, 1/(1−M)n → 1/(1−M+N/2)n

as CCSS.

Overall leads to resummed Pgg(x,Q2).
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Plots of Pgg for αS ∼ 0.2 for Forte (top)
and Colferai (bottom). White, RT at
NLO similar but dip a bit lower.

xP
gg

(x
)

x

MSbar scheme

Q0 scheme
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Q2 = 20 GeV2

αs(Q
2) = 0.224

Despite lots of differences in approaches.
(All include running coupling.) All get
dip, then very low x rise in Pgg. LO
lower than NLO different for Forte

→ all agree moderate effects compared
to original resummation ideas.
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White examines phenomenology,
but only at LO in resummation.

Impact factor required for Pqg

not yet known at NLO.

Better fit than NLO-in-αS in
terms of dF2(x, Q2)/d lnQ2.

Enhancement of evolution too
great at small x. Gluon
and FL(x,Q2) too small at
moderate x. Need the full
NLO generalization.
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Colferai and White both examine improvement to Pqg.

Two approaches are qualitatively similar. Contain different higher order information.

White – estimate of NLO corrections to impact factor, coupling resummation.

Colferai – resummation of Pgg beyond NLO via collinear resummation.

Both suggest effects of NLO resummation small but significant.
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Non-Linear Corrections at very small x.

Various discussions on how to improve small-x treatments to include the saturation
corrections, and more. Soyez – nonlinear evolution equation in rapidity Y extended to
include fluctuations as well as recombination. Opposite sign (generally).

Fluctuations

[E. Iancu, D. Triantafyllopoulos]
Also A. Mueller, S. Munier, A. Shoshi, S. Wong

Consider evolution of
〈
T (2)

〉

∂Y

〈

T (2)
〉

= ᾱM⊗
〈

T (2)
〉

︸ ︷︷ ︸

BFKL

− ᾱM⊗
〈

T (3)
〉

︸ ︷︷ ︸

saturation

+ ᾱα2
s K ⊗ 〈T 〉

︸ ︷︷ ︸

fluctuations

saturation −→ T ∼ 1 dense regime

fluctuations −→ T ∼ α2
s dilute regime

G. Soyez DIS 2006, April 19-24, Tsukuba, Japan High-energy QCD and satistical physics – p. 5/19
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Hatta demonstrated origin of fluctuations via a formal derivation of a Bremsstrahlung
Hamiltonian which can be used to give the evolution of n-dipole densities.

Evolution equation for the dipole densities

Dipole number operator

Dipole number density

NN nHn BFKL 
w

w

WBREMH

~Dipole pair density

)1()2(
BFKL

)2(
NNN nnHn � 

w
w
W

fluctuation term
)2(

Nn“seed” of

BREMH
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Inclusion of fluctuations lead to dispersion about saturation scale Soyez. Move onset
of saturation in dipole cross-section considerably downwards.

Describing F2

Following fits to the F p
2 data:

Saturation fit: [Iancu, Itakura, Munier]

〈T (r, Y )〉 =

8

>

>

<

>

>

:

(r2Q2
s)

γce−
2 log2(rQs)

CY r < 1/Qs

1 − e−a−b log2(rQs) r > 1/Qs

Q2
s(Y ) = λY , ρs = log(Q2

s)

Saturation+fluctuations fit: [in preparation]

〈T (r, Y )〉 =
∫

dρs T (r, ρs)
1√
πσ

e−
(ρs−ρ̄s)2

σ2

T (r, ρs) =

8

>

>

<

>

>

:

r2Q2
s r < 1/Qs

1 r > 1/Qs

log(1/r2)

T
(r

,Y
)
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G. Soyez DIS 2006, April 19-24, Tsukuba, Japan High-energy QCD and satistical physics – p. 16/19
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3. Extended BK-equation for gluon density
with impact parameter dependence.

(Kutak, Motyka)

fg(x, k2, b) = f̃ (0)
g (x, k2, b) + K1 ⊗ fg − K2 ⊗ f 2

g (4)

where

f̃ (0)
g (x, k2, b) = S(b)

αs(k
2)

2π

∫ 1

x

dzPgg(z, b)
x

z
g(

x

z
, k2

0)

K1 ⊗ fg = 2Nc
αs(k

2)

2π
k2

∫ 1

x

dz

z

∫

k2
0

dk′2

k′2











fg

(

x
z , k

′2, b
)

Θ
(

k2

z − k′2
)

− fg

(

x
z , k

2, b
)

|k′2 − k2|
+

fg

(

x
z
, k2

)

[4k′4 + k4]
1
2











+
αs(k

2)

2π

∫ 1

x

dz

z

[

(zPgg(z, b) − 2Nc)

∫ k2

k2
0

dk′2

k′2
fg

(x

z
, k′2, b

)

S(b) =
1

πR2
e−b2/R2

Where R = 2.8GeV −1 and conventional uninte-
grated gluon density is obtained:

f(x, k2) =

∫

d2bfg(x, k2, b) (5)

5

Kutak modifies LO BFKL
equation for non-linear recombination
term.

Also inclusion of impact parameter
dependence.

Inclusion of high-x effects in
gluon evolution (though not in
gluon quark impact factor, i.e.
effectively Pqg).
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Inclusion of impact parameter
dependence reduces the effect of
the nonlinear term.

Lowers the saturation scale in Q2

for a given x.

Rough phenomenology – “hardly
see effect of saturation” for
HERA.

Further NLO corrections likely to
reduce this further.
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FL predictions
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FL(x,Q2) can be calculated
using some variation of all
of the above methods →

much variation.

FL(x,Q2) predicted from
the global fit at LO, NLO
and NNLO, from a fit which
performs a resummation of
small-x terms, and from a
dipole model type fit.

Implies a measurement of
FL(x,Q2) over as wide
a range of x and Q2

as possible would be very
useful.
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Conclusions

Little agreement in global fit analyses. Not everyone wants to go to NNLO. Not
everyone agrees how to do it in detail. I believe we are now finally at stage where
NNLO parton analyses are complete and reliable. Should be done. Work a little better
than NLO in general.

Rather similar results coming from groups working on small-x resummations to be
used on top of fixed order calculations. Will probably still argue about how results
obtained. Effect of resummations moderate until very small x. Empirically can
improve fit a little even over NNLO. Resummations NLO at best. Fixed order NLO +
NLO resummations (large and small x) better than fixed order NNLO (Tung)?

Progress in nonlinear small-x equations, e.g. fluctuations. To me always seem to
be pushing saturation scale lower. Nice if this could match on to higher x better.
Usually confined to unknown small x region, missing higher x corrections. (Please
do not show data plot where main difference between two competing models is at
x = 0.01, Q2 = 1000GeV2. DGLAP must be appropriate here.)

Lots of improvement in how to calculate using different techniques. Not enough idea
yet where each approach is applicable/needed. Need better (real) phenomenology
and, of course, more useful data.
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