SPIN WORKING GROUP:

THEORY

CONVENOR: S. FORTE (MILAN)

SPEAKERS: M. EHRENFRIED (GIESSEN)

- L. GAMBERG (PENN STATE BERKS)
- M. HIRAI (TITECH)
- H. KAWAMURA (RIKEN)
- Y. KOIKE (NIIGATA)
- E. LEADER (IMPERIAL)
- P. MULDERS (AMSTERDAM)
- R. SASSOT (BUENOS AIRES)
- M. STRATMANN (REGENSBURG)
- M. STOLARSKI (WARSAW)
- H. YOKOYA (HIROSHIMA)
- F. YUAN (BNL)

THE PLAYERS

P. MULDERS

THE NAME OF THE GAME

• PARTON DISTRIBUTIONS: THE NUCLEON SPIN PROBLEM

(Ehrenfried, Hirai, Leader, Sassot, Stratmann, Stolarski)

- Δg : polarized glue
- Δs : polarized strangeness
- HIGHER ORDER CALCULATIONS: POLARIZED RESUMMATION (Kawamura, Koike, Yokoya)
 - THRESHOLD RESUMMATION
 - p_t RESUMMATION
- STRETCHING THE PERTURBATIVE DOMAIN: TRANSVERSITY
 - (Gamberg, Mulders, Yuan)
 - TWIST-3 & TRANSVERSE FACTN. UNIFICATION
 - UNIVERSALITY

THE NUCLEON SPIN PROBLEM

THE NUCLEON SPIN: WHAT IS THE PROBLEM?

 $\Delta \Sigma s^{\mu} \equiv (\Delta u + \Delta d + \Delta s) s^{m} u = \langle p, s | j_{5}^{\mu} | p, s \rangle \langle \langle p, s | j_{58}^{\mu} | p, s \rangle = (\Delta u + \Delta d - 2\Delta s) s^{\mu} \equiv a_{88}$

THE NUCLEON SPIN: WHAT IS THE PROBLEM?

 $\Delta \Sigma s^{\mu} \equiv (\Delta u + \Delta d + \Delta s) s^{m} u = \langle p, s | j_{5}^{\mu} | p, s \rangle < \langle p, s | j_{58}^{\mu} | p, s \rangle = (\Delta u + \Delta d - 2\Delta s) s^{\mu} \equiv a_{8}$ **OZI VIOLATION!**

OZI RULE:

THE NUCLEON SPIN: WHAT IS THE PROBLEM?

 $\Delta \Sigma s^{\mu} \equiv (\Delta u + \Delta d + \Delta s) s^{m} u = \langle p, s | j_{5}^{\mu} | p, s \rangle < \langle p, s | j_{58}^{\mu} | p, s \rangle = (\Delta u + \Delta d - 2\Delta s) s^{\mu} \equiv a_{8}$ **OZI VIOLATION!**

OZI RULE:

SOLUTIONS

• THE SINGLET AXIAL CHANNEL IS SPECIAL BECAUSE OF THE ANOMALY \Rightarrow POLARIZED GLUONS Δg

(scheme and scale dependence, instantons,...)

• THE OCTET AXIAL CHANNEL IS SPECIAL BECAUSE OF **SU(3)** SPIN STRUCTURE \Rightarrow POLARIZED STRANGENESS Δs (sea polarization, skyrmions,...)

TROUBLE

IN COMPARISON TO UNPOLARIZED CASE, TWO MAIN PROBLEMS

- ΔG : Gluon determined mostly by scaling violations, but small Q^2 range available in polarized case
- Δs : no polarized neutrino data

SEMI-INCLUSIVE DIS AND VARIOUS HADRONIC CHANNELS (W, DY, JETS...) PLAY/WILL PLAY A MAJOR ROLE

FIT TO DIS DATA ONLY....

(Altarelli, Ball, S.F., Ridolfi)

LOOKING FOR POLARIZED GLUE...

Constraint on large-x behavior of $\Delta g(x)$

|

- Positive $\Delta g(x)/g(x)$ at large-x
 - HERMES A1^d
 - $0.03 < x_{Bj} < 0.07, 1.2 < Q^2 < 1.7$
 - COMPASS-d: $4.5 < Q^2 < 8.6$
 - NLO gluon term
 - Positive contribution
 - Relative increasing for g_1^{D}
 - e_{uv}^{2} : 4/9(P) → 2.5/9(D)
 - Positive $\Delta g(x)$ at large-x
- Other DOF for HERMES-d ?
 - Higher Twist effects
 - LSS, PRD73(2006)034023
 - Antiquark SU_f(3) aymmetry
 - D. de Florian, et al., PRD71(2005)094018

х

LOOKING FOR POLARIZED STRANGENESS...

Asymmetry expressed with <u>purities</u>:

with $\mathcal{P}_{q}^{K^{\pm}}(x,z) = \frac{e_{q}^{2} q(x) D_{q}^{K^{\pm}}(z)}{\sum_{a'} e_{a'}^{2} q'(x) D_{a'}^{K^{\pm}}(z)}$

$$A_1^{K^{\pm}}(x,z) = \sum_q \mathcal{P}_q^{K^{\pm}}(x,z) \frac{\Delta q(x)}{q(x)}$$

"Probability that the virtual photon struck a quark of flavour q in the nucleon when a K^{\pm} is detected."

Simple linear relationship between the two measured asymmetries and the total non-strange quark distribution $Q(x) \equiv u(x) + \overline{u}(x) + d(x) + \overline{d}(x)$ and total strange quark distribution $S(x) \equiv s(x) + \overline{s}(x)$:

$$\begin{pmatrix} A_{1,d}(x) \\ A_{1,d}^{K^{\pm}}(x) \end{pmatrix} \propto \begin{pmatrix} \mathcal{P}_Q(x) & \mathcal{P}_S(x) \\ \mathcal{P}_Q^{K^{\pm}}(x) & \mathcal{P}_S^{K^{\pm}}(x) \end{pmatrix} \begin{pmatrix} \Delta Q(x)/Q(x) \\ \Delta S(x)/S(x) \end{pmatrix}$$

M. EHRENSFRIED

MORE TROUBLE...

HIGHER TWISTS AT LOW Q^2

- g_1 IN HERMES REGION SIGNIFICANTLY AF-FECTED BY HIGHER TWISTS
- HERMES COMPASS difference can be explained by higher twists instead of Δg

SU(3) CONSTRAINTS

- ASSUMING SU(3), OCTET CHARGE RELATED TO BARYON DECAY CONSTANTS $\Delta u + \Delta d 2\Delta s = 3F D = 0.585 \pm 0.025$
- $\Delta s > 0$ REQUIRES $a_8 \leq 0.2 \rightarrow 60\%$ SU(3) VIOLATION (Leader and Stamenov)

AND NLO CORRECTIONS!

K-factor myth

often it is assumed that NLO corrections drop out in \mathcal{A}_{LL} or that $\mathcal{K}=const$

21 Apr 2006

XIV Workshop on Deep-Inelastic Scattering (DIS 2006), Tsukuba

A SOLUTION: GLOBAL FITS TO DIS+SIDIS

how do we deal with pSIDIS data?

$$A_1^{Nh}(x,Q^2) \mid_{Z} \simeq \frac{\int_{Z} dz \, g_1^{Nh}(x,z,Q^2)}{\int_{Z} dz \, F_1^{Nh}(x,z,Q^2)},$$
$$g_1^{Nh}(x_{Bj},z,Q^2) = \frac{1}{2} \sum e_q^2 \left\{ \bigtriangleup D_q^h + \frac{\alpha_s}{2\pi} \left[C_{qq} \otimes \bigtriangleup \otimes D_q^h + C_{gq} \otimes \bigtriangleup \otimes D_q^h + C_{gq} \otimes \bigtriangleup \otimes D_q^h + C_{qg} \otimes \bigtriangleup \otimes D_q^h \right] \right\}$$

D. de Florian et al. Nuc.Phys.B470 (1996) 195

$$2 g_1^{p \pi^{+}(-)} \sim \frac{4}{9} (\Delta u + \Delta u) D_{1(2)}^{\pi} + \frac{1}{9} (\Delta d + \Delta d) D_{2(1)}^{\pi} + \frac{1}{9} (\Delta d + \Delta d) D_{2(1)}^{\pi} + \frac{1}{9} (\Delta d + 4\Delta u) (D_{1(2)}^{\pi} - D_{2(1)}^{\pi}) + \frac{1}{9} (\Delta s + \Delta s) D_s^{\pi}$$

$$D_u^{\pi^+} = D_d^{\pi^-} \equiv D_1^{\pi} \qquad D_d^{\pi^+} = D_u^{\pi^-} \equiv D_2^{\pi} \qquad \text{R. Sassot} \quad \text{DIS06} \qquad 18$$

RESULTS

•QUARK: THEORETICAL UNCERTAINTIES LARGER THAN ONE- σ ERRORS •GLUON: NON-GAUSSIAN ERRORS

R. SASSOT

THE IMPACT OF NEXT-TO-LEADING-ORDER CORRECTIONS

THE GLOBAL FIT OF DE FLORIAN, NAVARRO AND SASSOT

set		χ^2	χ^2_{DIS}	χ^2_{SIDIS}	$\delta \overline{u}$	$\delta \overline{d}$	$\delta \overline{s}$	δg	$\delta\Sigma$
NLO	KRE	430.91	206.01	224.90	-0.0487	-0.0545	-0.0508	0.680	0.284
	KKP	436.17	205.66	230.51	0.0866	-0.107	-0.0454	0.574	0.311
LO	KRE	457.54	213.48	244.06	-0.0136	-0.0432	-0.0415	0.121	0.252
	KKP	448.71	219.72	228.99	0.0497	-0.0608	-0.0365	0.187	0.271

- SEA QUARK DISTRIBUTIONS CHANGE BETWEEN 20% (Δs) AND A FACTOR OF SEVERAL ($\Delta \bar{u}$) FROM LO TO NLO
- $\Delta \chi^2 = 2\% \approx 9$ SUGGESTED \Rightarrow LARGE GLUON UNCERTAINTY

Δq : THE ROLE OF HADRONIC DATA

Δg from π^0 production (RUN05)

- 1^{st} moment Δq
 - 0.31 ± 0.32 (DIS+ π^{0})
 - 0.47 ± 1.08 (DIS only)
- Significant reduction of the Δq uncertainty
- Sign problem
 - gg process dominates
 - $\Delta \sigma \propto [\Delta g(x)]^2$ •
 - Positive or negative Δq ?
 - χ²_{π0}: 11.18(Δg>0) vs. 11.05 (Δg<0)
 - (8 data points)

- Consistent results
 - 1^{st} moment (0.1<x_{Bi}<1)
 - Δg >0: 0.30 ± 0.30 •
 - $\Delta g < 0: 0.32 \pm 0.42$
 - DIS + π^0 data covered
- Large-x is positive 7/9 —

DIS CONSTRAINS LOW MOMENTS \Rightarrow LARGE ERROR REDUCTION IF COMBINED π^0 CONSTRAINS VALUE IN NARROW x RANGE

M. HIRAI

NEED FOR A GLOBAL FIT!

global analysis

unpolarized pdfs:

CTEQ, MRST

- gluon constrained by scaling-violations
- *2nd moment constrained (mom. sum)*
- pp data only for fine-tuning pdfs

K-factor approx., etc. often reasonable

polarized pdfs:

completely different situation!

- *gluon unconstrained by existing DIS data*
- no momentum sum rule; pol. pdfs can have nodes
- **pp** data determine Δg and other aspects of pdfs

full NLO global analysis mandatory; approximations often misleading

XIV Workshop on Deep-Inelastic Scattering (DIS 2006), Tsukuba

(NO) CONCLUSION ON NUCLEON SPIN

 ΔG probably small $\left(\frac{N_f}{2\pi}\right) \alpha_s(Q^2) \Delta G \lesssim \frac{1}{2} \Delta \Sigma$, perhaps zero Δs probably negative, perhaps small

(NO) CONCLUSION ON NUCLEON SPIN YET

EXISTING RESULTS VERY HARD TO COMPARE:

• SOME LO, SOME NLO: DIFFERENCE TYPICALLY 20%

- LARGE SCHEME DEPENDENCE OF $\Delta \Sigma$, $O\left(\frac{N_f}{2\pi}\right) \alpha_s(Q^2) \Delta G$
- ERRORS DETERMINED WITH $\Delta\chi^2 = 1$ UP to $\Delta\chi^2 = 12$
- MANY TH. ERRORS DIFFICULT TO ESTIMATE/NOT INCLUDED

 ΔG probably small $\left(\frac{N_f}{2\pi}\right) \alpha_s(Q^2) \Delta G \lesssim \frac{1}{2} \Delta \Sigma$, perhaps zero Δs probably negative, perhaps small

RESUMMATION

HIGHER ORDER CALCULATIONS....

avail. NLO results

NLO for polarized lepton-proton scattering (COMPASS, HERMES):

only photoproduction of single-hadrons and heavy flavors available

Jäger,MS,Vogelsang

Bojak, MS

21 Apr 2006

XIV Workshop on Deep-Inelastic Scattering (DIS 2006), Tsukuba

THE NEED FOR THRESHOLD RESUMMATION

Threshold logs

Large corrections come from the partonic threshold region (z~1)

- \checkmark real emission suppressed by the phase space restriction
- ✓ imbalance occurs between real and virtual gluon corrections (after the cancellation of IR pole)

- \rightarrow only soft gluon can be emitted
- → soft gluon (eikonal) approximation to treat these logs up to all orders

9

IMPACT OF RESUMMATION SIZABLE, BUT LARGELY CANCELS IN ASYMMETRY

p_T **RESUMMATION**

 Q_{σ} resummation

Collins, Soper '81 Collins, Soper, Sterman '85

Next-to-leading logarithmic (NLL) resummation in tDY:

H.K, Kodaira, Shimizu, Tanaka : hep-ph/0512137

b : *impact parameter*

$$\frac{\Delta_T d\sigma}{dQ^2 dy d\phi dQ_T^2} = \frac{\alpha^2}{3N_c SQ^2} \cos(2\phi) \left[\frac{1}{2} \int d\vec{b} e^{i\,\vec{b}\cdot\vec{Q}_T} \ e^{S(b,Q)} R(b,Q,y) + Y(Q_T^2,Q^2,y) \right]$$

Sudakov factor

$$S(b,Q) = -\int_{1/b^2}^{Q^2} \frac{d\mu^2}{\mu^2} \left\{ \ln \frac{Q^2}{\mu^2} A(\alpha_s(\mu^2)) + B(\alpha_s(\mu^2)) \right\} \quad \Longleftrightarrow$$
$$A(\alpha_s) = C_F \frac{\alpha_s}{\pi} + \frac{1}{2} C_F \left\{ \left(\frac{67}{18} - \frac{\pi^2}{6} \right) - \frac{5}{9} N_f \right\} \left(\frac{\alpha_s}{\pi} \right)^2$$
$$B(\alpha_s) = -\frac{3}{2} C_F \frac{\alpha_s}{\pi} \qquad universal$$
$$R(b,Q,y) = \sum C_i \otimes \delta q_i \left(x_1^0, \frac{1}{4} \right) \cdot C_i \otimes \delta q_i \left(x_2^0, \frac{1}{4} \right)$$

Catani et al. '01

$$C_{i}(z,\alpha_{s}) = \sum_{i} C_{i} \otimes \delta q_{i} \left(x_{1},\overline{b}\right) \cdot C_{\overline{i}} \otimes \delta q_{\overline{i}} \left(x_{2},\overline{b}\right)$$
$$C_{i}(z,\alpha_{s}) = \delta(1-z) \left\{1 + \frac{\alpha_{s}}{4\pi}C_{F}(\pi^{2}-8)\right\} \qquad \text{coeff.}$$

coeff. function

Hiroyuki Kawamura (RIKEN)

H. KAWAMURA

STABILIZATION: DRELL-YAN

Q_T spectrum

pp collision @ RHIC

 $\sqrt{s} = 200 \text{ GeV}, \ Q = 8 \text{ GeV}, \ y=2, \qquad =0$

 $F^{NP}(b) = e^{-g_{NP}b^2}$

 $g_{NP} = 0.3, 0.5, 0.8 GeV^{e}$

 \iff < k_{τ} >= 0.7, 0.9, 1.1 GeV

RESUMMATION REMOVES SINGULARITY AS $q_t \rightarrow 0$

H. KAWAMURA

THE CASE OF SIDIS

 \star Structure of the lowest order cross section Cf. Y.K. & J. Nagashima, NPB 660 ('03) 269, (E) 742('06) 312 • $\frac{d^5 \sigma^{\text{LO}}}{dQ^2 dx_{bi} dz_f dq_T^2 d\phi} = \sigma_0 + \cos(\phi) \sigma_1 + \cos(2\phi) \sigma_2,$ $p_T = z_f q_T$ for $ep \to e\pi X$, $e\vec{p} \to e\vec{\Lambda} X$. • $\frac{d^5 \sigma^{\text{LO}}}{dQ^2 dx_{hi} dz_f dq_T^2 d\phi} = \sigma_0 + \cos(\phi) \sigma_1, \quad \text{for } \vec{e} \vec{p} \to e\pi X, \ \vec{e} p \to e \vec{\Lambda} X.$ • $\frac{d^5 \sigma_T^{\text{LO}}}{dQ^2 dx_{bi} dz_f dq_T^2 d\phi} = \cos(\Phi_A - \Phi_B - 2\phi)\sigma_0^T + \cos(\Phi_A - \Phi_B - \phi)\sigma_1^T + \cos(\Phi_A - \Phi_B)\sigma_2^T,$ for $ep^{\uparrow} \to e\Lambda^{\uparrow} X$.

 $(\Phi_{A,B} = \text{azimuth. of } S_{\perp A,B} \text{ around } \vec{p}_{A,B} \text{ measured from the } hadron \text{ plane.})$

$$\star \sigma_0, \ \sigma_0^T \sim \frac{1}{q_T^2} \ln \left(\frac{Q^2}{q_T^2} \right) \text{ as } q_T \to 0. \longrightarrow \quad \text{We focus on the resummation} \\ \text{ of this part.}$$

$$\sigma_1, \ \sigma_1^T \sim \frac{1}{q_T} \ln\left(\frac{Q^2}{q_T^2}\right), \quad \sigma_2, \ \sigma_2^T \sim \ln\left(\frac{Q^2}{q_T^2}\right)$$

Less singular. Could be resummable. But not in this work.

TRANSVERSITY

SINGLE-SPIN ASYMMETRIES...

Naïve Parton Model Fails to Explain Large SSAs

 If the underlying scattering mechanism is hard, the naïve parton model generates a very small SSA: (G. Kane et al, PRL41, 1978)

• It is in general suppressed by $\alpha_{\rm S} \, m_{\rm q}/Q$

We have to go beyond the naïve parton model to understand the large SSAs observed in hadronic reactions

...AND THEIR ORIGIN

Two Mechanisms in QCD

- Transverse Momentum Dependent Parton Distributions
 - Sivers function, Sivers 90
 - Collins function, Collins 93
 - Gauge invariant definition of the TMDs: Brodsky, Hwang, Schmidt 02; Collins 02; Belitsky, Ji, Yuan 02; Boer, Mulders, Pijman, 03
 - The QCD factorization: Ji, Ma, Yuan, 04; Collins, Metz, 04
- Twist-three Correlations (collinear factorization)
 - Efremov-Teryaev, 82, 84
 - Qiu-Sterman, 91,98

DIS2006, KEK

TWIST-3: QUARK-GLUON CORRELATIONS

p_T -DEPENDENT FACTORIZATION

TMD Factorization

■ When $q_{\perp} \ll Q$, a TMD factorization holds,

$$\frac{d^{3} \triangle \sigma(S_{\perp})}{dx_{B} dz_{h} d^{2} P_{h\perp}} = \frac{\epsilon^{\alpha \beta} S_{\perp \alpha} P_{h\perp \beta}}{M_{P}} \int d^{2} \vec{k}_{\perp} d^{2} \vec{p}_{\perp} d^{2} \vec{\lambda}_{\perp} \quad H(Q)$$

$$\times \frac{\vec{k}_{\perp} \cdot \vec{P}_{h\perp}}{P_{h\perp}^{2}} \, \delta^{(2)}(z_{h} \vec{k}_{\perp} + \vec{p}_{\perp} + \vec{\lambda}_{\perp} - \vec{q}_{\perp})$$

$$\times q_{T}(x_{B}, k_{\perp}, \zeta) \, \hat{q}(z_{h}, p_{\perp}, \hat{\zeta}) \, (S(\lambda_{\perp}))^{-1}$$

When $q_{\perp} \gg \Lambda_{QCD}$, all distributions and soft factor can be calculated from pQCD, by radiating a hard gluon

April 21, 2006

DIS2006, KEK

13

UNIFICATION THORUGH EVOLUTION

Sivers Function at Large k_{\perp}

$$q_T(x,k_{\perp}) = -\frac{\alpha_s}{4\pi^2} \frac{2M_p}{(k_{\perp}^2)^2} \int \frac{dx}{x} \{A + C_F T_F(x) \\ \times \delta(\xi - 1) \left(\ln \zeta^2 / \vec{k}_{\perp}^2 - 1 \right) \}$$

 $\square 1/k_{\perp}^4$ follows a power counting

- Drell-Yan Sivers function has opposite sign
- Plugging this into the factorization formula, we indeed reproduce the polarized cross section calculated from twist-3 correlation

April 21, 2006

DIS2006, KEK

18

PROCESS-DEPENDENT COEFFICIENTS...

Gluonic poles

• Thus

 $\Phi_{\partial}^{[\pm]\alpha}(\mathsf{X}) = \Phi_{\partial}^{\alpha}(\mathsf{X}) + \mathsf{C}_{\mathsf{G}}^{[\pm]} \, \pi \Phi_{\mathsf{G}}^{\alpha}(\mathsf{X},\mathsf{X})$

- $C_{G}^{[\pm]} = \pm 1$
- with universal functions in gluonic pole m.e. (T-odd for distributions)
- There is only one function $h_1^{\perp(1)}(x)$ [Boer-Mulders] and (for transversely polarized hadrons) only one function $f_{1T}^{\perp(1)}(x)$ [Sivers] contained in $\pi\Phi_G$
- These functions appear with a process-dependent sign
- Situation for FF is more complicated because there are no T constraints

What about other hard processes (in particular pp scattering)?

Efremov and Teryaev 1982; Qiu and Sterman 1991 Boer, Mulders, Pijlman, NPB 667 (2003) 201

...AND UNIVERSAL PARTONIC QUANTITIES

Gluonic pole cross sections

- In order to absorb the factors C_G^[U], one can define specific hard cross sections for gluonic poles (to be used with functions in transverse moments)
- for pp:

Bomhof, Mulders, Pijlman, EPJ; hep-ph/0601171

HADRONIC QUANTITIES CAN BE EXPRESSED IN TERMS OF UNIVERSAL PARTONIC MATRIX ELEMENTS...

THE ROAD TO PHENOMENOLOGY COMPARISON TO HERMES DATA

Collins Asymmetry

L.G., Goldstein, Oganessyan PRD 2003: updated For the HERMES kinematics $1 \text{ GeV}^2 \le Q^2 \le 15 \text{ GeV}^2$, $4.5 \text{ GeV} \le E_{\pi} \le 13.5 \text{ GeV}$, $0.2 \le x \le 0.41$, $0.2 \le z \le 0.7$, $0.2 \le y \le 0.8$, $\langle P_{h\perp}^2 \rangle = 0.25 \text{ GeV}^2$

$$\langle \frac{P_{h\perp}}{M_{\pi}}\sin(\phi+\phi_s)\rangle_{UT} = |S_T| \frac{2(1-y)\sum_q e_q^2 h_1(x)zH_1^{\perp(1)}(z)}{(1+(1-y)^2)\sum_q e_q^2 f_1(x)D_1(z)}.$$

Data from A. Airapetian et al. PRL94,2005

14th Conference on DIS-2006 *Tsukuba, Japan 20 April 2005* ...WHICH CAN BE MODELLED IN TERMS OF ORDINARY PDFS

SUMMARY

- A DRAMATIC IMPROVEMENT OF OUR UNDERSTANDING OF
 NUCLEON SPIN IS BEHIND THE CORNER, DUE TO COMBINATION
 OF HERMES, COMPASS & RHIC DATA WITH FULL NLO
 ANALYSIS
- NLO AND RESUMMED RESULTS ALREADY AVAILABLE FOR MOST INTERESTING POLARIZED PROCESS

• FACTORIZATION OF COLLINS, SIVERS AND BOER-MULDERS PROCESSES UNDERSTOOD IN QCD

SUMMARY

- A DRAMATIC IMPROVEMENT OF OUR UNDERSTANDING OF NUCLEON SPIN IS BEHIND THE CORNER, DUE TO COMBINATION OF HERMES, COMPASS & RHIC DATA WITH FULL NLO ANALYSIS NEED A FULL CONSISTENT GLOBAL FIT
- NLO AND RESUMMED RESULTS ALREADY AVAILABLE FOR MOST INTERESTING POLARIZED PROCESS SOME EXPERIMENTALLY RELEVANT PROCESSES MISSING: E.G. TWO LARGE p_t HADRONS
- FACTORIZATION OF COLLINS, SIVERS AND BOER-MULDERS PROCESSES UNDERSTOOD IN QCD NEED SYSTEMATIC PHENOMENOLOGY

OUTLOOK

SPIN PHYSICS CHALLENGES OUR KNOWLEDGE OF QCD AT A FUNDAMENTAL LEVEL

IT IS THE ULTIMATE TESTING GROUND OF OUR UNDERSTANDING OF ITS THEORY AND PHENOMENOLOGY