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Ultrahigh Energy CosmicUltrahigh Energy Cosmic--Ray Sources (Ray Sources (UHECRsUHECRs))

UHECRs
1020 eV ~ 20 J
not achieved by any 
accelerator on the Earth

Information
•spectrum (e.g., ankle)
•composition
•arrival distribution

Question
•origin? （Extragalactic)
•generation mechanism?

Ankle 
~ 1018.5 eV

2nd Knee 
~1017.5 eV

LHC ( Berezinsky 2007 )



GGreisenreisen--ZZatsepinatsepin--KKuzminuzmin MechanismMechanism
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For protons with Ep>5×1019eV   
pγ reaction with CMB photons 
→ energy loss length ~ 100 Mpc
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Sources of observed UHECRs
→ nearby universe < 100 Mpc

Takami, KM, Nagataki, & Sato 2009, Astropart. Phys.



Candidates of the UHECR OriginCandidates of the UHECR Origin
Necessary condition for UHECR acceleration (Hillas)

E < ZeBrβ,  B2/8π=LB/4πr2Γ2βc
→ Necessary magnetic luminosity LB > 1045.5 erg/s Γ2 β-1 Z-2

GRBs
AGNs

The most energetic
explosion

EGRB~1051ergs

Clusters

The most massive
black hole

MBH~106-9Msun

The largest 
gravitational object

rvir ~ a few Mpc

New Magnetars

The strongest 
magnetic field

B ~ 1015 G



Source Requirement & Persistent AGNsSource Requirement & Persistent AGNs
• Necessary condition for UHE proton acceleration (Hillas)

E < eBrβ,  B2/8π=LB/4πr2Γ2βc
→ Necessary magnetic luminosity LB > 1045.5 erg/s Γ2 β-1

• ActiveGalactic Nuclei (AGN)＝typical persistent candidates
1. A small fraction of nearby AGNs satisfy Ljet > 1045.5 erg/s

(e.g., FR II： nＦＲＩＩ~10-(7-8) Mpc-3 << Auger: n~10-4 Mpc-3)
2. Correlated AGNs seem dim

(Lbol < 1045 erg/s)

→One of the solutions:
Transients (flares or bursts)

Another solution: heavy nuclei
e.g., radio-quiet AGNs (Peer, KM, & Meszaros 2009）

Zaw et al. 2009

AGN corr.
with UHECRs



Information from UHECR observations (low statistics at present)
1. Spectrum (SD+FD) → GZK or non-GZK cutoff?
2. Anisotropy (above the GZK energy)→ correlation with the sources?
3. Composition (Xmax and its fluctuation)→ p or Fe or mixed?

Composition?

Nuclei-dominated or mixed
↓

AGNs, GRBs, clusters, SB galaxies,
or only a few AGNs such as Cen A

How are 2&3 satisfied?
(GMF is important!)

Proton-dominated
↓

AGNs, GRBs, or magnetars

Transient

???AGNs
Absence of corr. with sufficiently bright AGNs

Persistent

GRBs
•HL GRB: energetics problem
•LL GRB: a few samples so far 

AGNs
•Blazar-like flares in radio AGNs
•Giant flare: non-detected so far

•Active young AGNs: energetics? 
Newly born magnetars

Acc. mechanism?

AGNs with powerful jets
Absence of corr. with many radio galaxies

FR II galaxies are too few 
•DSA in or with kinetic jets?
•Non-DSA in Poynting jets?
AGNs without powerful jets

•Non-DSA in the vicinity of BH?
•Non-DSA in lobes?



Strategy for Transient SourcesStrategy for Transient Sources
“Transients should be considered as a possibility”

• What can we learn from UHECR obs.? (KM & Takami 2009, ApJL)

→ Constraints on the energetics and local rate density



Requirements for UHECR SourcesRequirements for UHECR Sources

Two requirements
• Accelerate CRs to (~1020 eV) without significant loss

Hillas condition, detailed acceleration mechanisms 
photon and magnetic fields in the source

• Providing the sufficient amount of UHECRs
If the sources are transient
(UHECR energy budget ~ 1044 erg Mpc-3 yr-1)
＝(burst rate)×(UHECR energy input per burst)

We show UHECR obs. partially solves the degeneracy

per volume



Constraints on Transient SourcesConstraints on Transient Sources

(apparent source density) = (apparent duration)×(burst rate)

• The apparent source density estimated from small-scale anisotropy 
AGASA ns ~ 10-5 Mpc-3

, PAO: ns ~ 10-4 Mpc-3 (e.g., Takami & Sato 08)

• Constraints on the apparent duration → constraints on the burst rate

Points:
Apparent duration is determined by B
1. GMF is unavoidable

(disk mag. BG ~ µG
+ “possible” dipole halo mag.)

2. IGMFs are especially unknown 
But too strong GMFs and IGMFs lead to diminish positional correlation 
of ϕ ∼ a few° suggested by PAO 2007

per volume



• Calculations of UHECRs propagating in the universe including 
both the GMF and IGMF (and relevant losses are considered)
(Yoshiguchi+ 03, Takami & Sato 07)

→ Constraints on the rate of bursts contributing the UHECR 
flux from PAO results

• Fits with the obs. spectrum → UHECR energy budget
→UHECR energy input per burst and the local burst rate can be  
determined at the same time

•Total CR energy ECR would be much larger
dN/dE∝ E-2 implies ECR ~ ln(1012GeV/GeV)EHECR

Auger: ϕ < 5°
BIG λcoh

1/2 < nG Mpc1/2
GMF

with dipole
GMF

without dipole

at 1019 eV

E

E2 (dN/dE)

1019eV

iso

KM & Takami, ApJL, 690, L14 (2009)



High Luminosity GRB
Classical long GRBs
(Waxman 95, Vietri 95)

Low Luminosity GRB
Numerous but dimmer GRBs
(KM, Ioka, Nagataki, & Nakamura 06)

Magnetar
Newly born (~ms) magnetars
(Arons 03)

Giant AGN Flare
>~ day flares per 104-5 yr
(Farrar & Gruzinov 08)

Implications for Implications for Transient UHECR SourcesTransient UHECR Sources

“UHECR energy input per burst is not small”
Structured mag. ~Mpc w. 3 nG→ < 100 Gpc-3 yr-1

(Takami & KM, in prep.)

KM & Takami, ApJL, 690, L14 (2009)

HL GRB

LL GRB
AGN Flare

magnetar

s=2



Strategy for Transient SourcesStrategy for Transient Sources
“Transients should be considered as a possibility”

• What can we learn from UHECR obs.? (KM & Takami 2009, ApJL)

→ Constraints on the energetics and local rate density
• But… identifying the sources are difficult for transients
→ MFs lead to UHECR delay time of >~100-1000 yrs  

(GMF and MF in the vicinity of the source are sufficient)  

• Neutrinos and γ rays from the source are more important

µµµµ ννννννµπ ++++ ±±± )(→)(→ eee
Xp ++ ± 0,→ ππγ

γπ  2→0

Xpp ++ ± 0,→ ππ



Calculation of HighCalculation of High--Energy EmissionEnergy Emission
(e.g., KM 2007, PRD, 76, 123001; 2008, PRD(R), 78, 101302)

• Input (we here consider GRBs and AGNs)
proton dis.: N(εp)∝εp

-2exp(-ε/εp
max), 

photon dis.: based on obs., magnetic field B: parameter

• Meson production (pγ and pp)
(based on exp. data, Geant4, and SIBYLL) 
★multipion production is relevant for photon indices ≦ 1

• Cooling processes: syn., IC, ad., BH, pγ, pp, (photodis.)
★maximum energy is determined by
(acc. time ~ εp/eBc) < (cooling time), (dyn. time) + Hillas
★meson cooling is important when tcool < tdecay

Here, we focus on γ rays that are not cascaded in the source
simple but sufficient for UHE γ rays in our typical cases



TeVTeV--EeVEeV NeutrinosNeutrinos

Neutrinos ⇔ a good probe of proton acceleration
TeV-EeV neutrinos may be detected by IceCube/KM3Net

• Ex: prompt emission of high- and low-luminous GRBs
HL GRB: ~1 events @ z=0.1, LL GRB: ~0.2 events @ z=0.005

• Other possibilities (flares, afterglows...)

taken from IceCube homepage

(KM 2007, PRD)

(KM et al. 2008, PRD)



The Cumulative Neutrino BackgroundThe Cumulative Neutrino Background
Transients → space and time coincidence → atm. bkg. reduced

Testing some of the predictions is possible (but not easy for others)

• GRB prompt (Waxman & Bahcall 97, KM+ 06)、 early afterglow (e.g., KM 07)

• AGN jet (flare/non-flare), Cluster (non-flare) (e.g., KM et al. 08)

• Newly born fast rotating magnetar (KM, Meszaros, & Zhang 09)



EeVEeV Neutrinos?Neutrinos?
Neutrinos ⇔ a good probe of proton acceleration

proof of UHECRs⇔ Eν ~ 0.05Ep ~ 5 EeV (Ep/1020eV)

taken from IceCube homepage

• Syn. cooling of π± before decay → >EeV suppressed
• IceCube (<100 PeV suitable); Auger (> EeV earth-skimming)
• >EeV neutrino detections are not so easy…



Gamma RaysGamma Rays

τγγ＝１

• 10 GeV-10 PeV γ rays cannot leave the source
→EM cascades in the source → GeV-TeV γ rays
leptonic or lower-energy CRs can contribute

• UHE γ rays can escape from the source
Eγ ~ 0.1Ep ~ 10 EeV (Ep/1020eV) ⇔ proof of UHECRs

→ Talk by
K. Asano



Mean Free Path and Energy Loss LengthMean Free Path and Energy Loss Length

uncertainty of the cosmic
radio background (CRB) 

• 100 TeV-EeV γ rays → λ << Mpc
• >10 EeV UHE γ rays → λ > a few Mpc!



Electromagnetic CascadesElectromagnetic Cascades
Cascades in the highest energies
Klein-Nishina (like) → leading particle effect 
→ Approx. energy cons. in γ→e→γ→… (Ee ~ Eγ≠ Eγ/2)
→ Eff. loss length is ~10 times longer (~10-100 Mpc)

• EM cascades are treated in the rectilinear approx.
(valid when MF in voids is weak enough)

(same for e+)

(e.g., Bhatacharjee & Sigl 00,
see also Protheroe 86, Lee 98)syn. IC pair-creation



Spectra of UHE Gamma RaysSpectra of UHE Gamma Rays

somewhat bright LL GRB
Ep

2 (dNCR/dEp) ~ 1050.5 erg 
Lγ ~ 1048 erg/s, Eγ

b=10 keV
Uγ=UB , (Up~10Uγ)
Ep

max ~ 1020.5 eV
fpγ = tdyn/tpγ ~ 0.03

KM 2009, PRL

Ex.: low-luminous (LL) GRBs (another ex.: AGN flares)
↑nearby GRBs were dim (980425@40Mpc, 060218@140Mpc)
＊Far LL GRBs (>>100 Mpc) cannot be seen by Swift/Fermi

thick: no CRB
thin: extreme CRB

cascaded (<10 EeV), cascaded + non-cascaded (>10 EeV)



DetectabilityDetectability
~103.5km2：D <~40 Mpc; ~0.3-3 photons@20 Mpc
~105.5km2：D <~75 Mpc; ~0.3-30 photons@40 Mpc

• There is room to expect such a lucky event at < 100 Mpc
General (KM & Takami 09): 10-3.5-10/yr, HL GRB (Waxman 95): 10-3/yr
LL GRB (KM et al. 06), Giant AGN flare (Farrar & Gruzinov 09): 0.3-3/yr

KM 2009, PRL

Auger
JEM-EUSO



Summary and DiscussionSummary and Discussion
UHE γ: useful for identifying nearby UHECR sources

• Especially important for transients (GRB, AGN)
+all-sky monitor → time and space coincidence
anisotropy in UHE γ-ray background (difficult)

• Useful even for persistent sources (KM & Takami, in prep.)

(UHE γ rays produced during UHECR propagation)
• GeV-TeV γ−ray echoes/haloes can be important

Bonus if UHE γ rays from the source are detected
• Clues to the radio background and MF in voids
• >1000 times stronger constraints on the LIV



マスタ サブタイトルの書式設定
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SparesSpares



On the Magnetic FieldsOn the Magnetic Fields
Q. UHECRs are delayed. How about UHE γ rays?

A. Cascaded UHE γ rays have much shorter delay time.
• 1019.75 eV p delay time ~ 102-3 yrs by the GMF (KM & Takami 09)

• 1019.75 eV p delay time > 100 yrs only by the structured MF
Ex.: filaments w. Bst=1-3 nG, λst,coh=R=Mpc
→ p delay time ~ 100-1000 yrs
clusters w. Bst=0.1-0.3 µG, λst,coh=R=Mpc
→ p delay time ~ 106-7 yrs

• > 1019eV UHE γ rays have λγγ > 3 Mpc
They may feel only the weak void MF (< nG)

• Void MFs can be very weak (even ~ 10-20 G is possible)
B=10-13 G, λcoh=kpc, D=50 Mpc→ UHE γ delay time ~ 103 s



Example: GRB NeutrinosExample: GRB Neutrinos
Cosmic-ray Spectrum (Fermi) Photon Spectrum (Prompt)

2.0~κπ+n→∆→γ+p p
+

εp

Key parameter
CR loading

εγ
2N(εγ)εp

2N(εp)

1018.5eV 1020.5eV

εγ
εγ,pk~300keV εmax

2-α~1.0

2-p~0 2-β~-0

EHECR≡εp
2N(εp) 

~εγ,pk
2N(εγ,pk)total ECR~20EHECR

~ΓGeV

Photomeson Production

)7.04.0(~κX+πN→γ+p p
± －Δ-resonance

Δ-resonance approximation
εpεγ ~ 0.3 Γ2 GeV2 

εp
b~ 0.3 Γ2/εγ,pk ~ 50 PeVmulti-pion production

Photomeson production efficiency
~ effective optical depth for pγ process

fpγ ~ 0.2 nγσpγ (r/Γ)
(in proton rest frame)



Δ-resonance approximation
pion energy επ~ 0.2 εp
break energy επb~ 0.06 Γ2/εγ,pk ~ 10 PeV

επ

Meson Spectrum

επ
ｂ επ

syn

β-1~1

α-1~0

επ
2N(επ)

~fpγEHECR

Neutrino Spectrum

εν
b

β-1~1

α-1~0

εν
2N(εν) )(→ µµ

±± νν+µπ

)()(e→ ee µµ
±± νν+νν+µ

α-3~-2.0
meson cooling before decay
(meson cooling time) ~ (meson life time)
→ break energy in neutrino spectra

meson & muon decay µµee
±

µµ
±± ν+ν+)ν(ν+e→)ν(ν+µ→π

εν
μsyn εν

πsyn

εν

α-3~-2.0

Δ-resonance approximation
neutrino energy εν ~ 0.25 επ ~ 0.05 εp
•ν lower break energy ενb ~ 2.5 PeV
•ν higher break energy ενπsyn ~ 25 PeV

0:2:1::e =ννν τµ

1:1:1::e =ννν τµ

8.1:8.1:1::e =ννν τµ

Neutrino oscillation No losspγ process at ∆-res.
(Kashti & Waxman 05) High εν

Loss limit



Examples: Examples: GRBsGRBs and AGNand AGN JetsJets
KM & Nagataki, PRD, 73, 063002 (2006); KM, Ioka, Nagataki, & Nakamura ApJ, 651, L5 (2006); 
KM & Nagataki, PRL, 97, 051101 (2006); KM, PRD, 76, 123001 (2007) etc.

GRB AGN

•Unique probe of baryon acceleration and source models
•IceCube, KM3Net → detection is possible especially for transients
•#~1-10/yr (optimistic), but #<1/yr (pessimistic) for 100TeV-100PeV 



HighHigh--Energy NeutrinosEnergy Neutrinos
IceCube/KM3Net could detect the sources (especially if transient)

• GRB prompt (Waxman & Bahcall 97, KM+ 06)、 early afterglow (e.g., KM 07)

• AGN jet (flare/non-flare), Cluster (non-flare) (e.g., KM et al. 08)

• Newly born fast rotating magnetar (KM, Meszaros, & Zhang 09)
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