Ultrahigh-Energy Photons as a Probe of the Highest-energy Cosmic Rays ~ Transient Case ~

Kohta Murase

(Yukawa Institute for Theoretical Physics, Kyoto University)

Ref: K. Murase, Phys. Rev. Lett., 103, 081102 (2009) K. Murase & H. Takami, ApJL, 690, L14 (2009)

Ultrahigh Energy Cosmic-Ray Sources (UHECRs)

Greisen-Zatsepin-Kuzmin Mechanism

Takami, KM, Nagataki, & Sato 2009, Astropart. Phys.

Candidates of the UHECR Origin

Necessary condition for UHECR acceleration (Hillas) $E < ZeBr\beta$, $B^2/8\pi = L_B/4\pi r^2\Gamma^2\beta c$ Necessary magnetic luminosity $L_B > 10^{45.5} erg/s \Gamma^2 \beta^{-1} Z^{-2}$

The most energetic explosion E_{GRB}~10⁵¹ergs

The most massive black hole M_{BH}~10⁶⁻⁹M_{sun}

The strongest magnetic field B ~ 10¹⁵ G

The largest gravitational object r_{vir} ~ a few Mpc

Source Requirement & Persistent AGNs

- Necessary condition for UHE proton acceleration (Hillas) $E < eBr\beta$, $B^2/8\pi = L_B/4\pi r^2\Gamma^2\beta c$ Necessary magnetic luminosity $L_B > 10^{45.5} erg/s \Gamma^2 \beta^{-1}$
- ActiveGalactic Nuclei (AGN) = typical persistent candidates

 A small fraction of nearby AGNs satisfy L_{jet} > 10^{45.5} erg/s
 (e.g., FR II: n_{FRII}~10⁻⁽⁷⁻⁸⁾ Mpc⁻³ << Auger: n~10⁻⁴ Mpc⁻³)
 Correlated AGNs seem dim
 (L_{bol} < 10⁴⁵ erg/s)

AGN corr.

loa(Lbol) (era/s)

with UHECRs

One of the solutions: Transients (flares or bursts)

Another solution: heavy nuclei

Strategy for Transient Sources

"Transients should be considered as a possibility"

• What can we learn from UHECR obs.? (KM & Takami 2009, ApJL) Constraints on the energetics and local rate density

Requirements for UHECR Sources

Two requirements

- Accelerate CRs to (~10²⁰ eV) without significant loss Hillas condition, detailed acceleration mechanisms photon and magnetic fields in the source
- Providing the sufficient amount of UHECRs
 If the sources are transient
 (UHECR energy budget ~ 10⁴⁴ erg Mpc⁻³ yr⁻¹)
 = (burst rate) × (UHECR energy input per burst)
 per volume

We show UHECR obs. partially solves the degeneracy

Constraints on Transient Sources

(apparent source density) = (apparent duration) × (burst rate)

- per volume
- The apparent source density estimated from small-scale anisotropy AGASA n_s ~ 10⁻⁵ Mpc⁻³, PAO: n_s ~ 10⁻⁴ Mpc⁻³ (e.g., Takami & Sato 08)
- Constraints on the apparent duration constraints on the burst rate

Points:

Apparent duration is determined by B

 GMF is unavoidable (disk mag. B_G ~ μG + "possible" dipole halo mag.)

2. IGMFs are especially unknown But too strong GMFs and IGMFs lead to diminish positional correlation of $\phi \sim a$ few ° suggested by PAO 2007 Calculations of UHECRs propagating in the universe including both the GMF and IGMF (and relevant losses are considered) (Yoshiguchi+ 03, Takami & Sato 07)

Constraints on the rate of bursts contributing the UHECR flux from PAO results KM & Takami, ApJL, 690, L14 (2009)

 Fits with the obs. spectrum UHECR energy budget UHECR energy input per burst and the local burst rate can be determined at the same time

$$(0.3-20) \times 10^{50} \text{ erg} \lesssim \tilde{\mathcal{E}}_{\text{HECR}}^{\text{iso}} \lesssim 10^{54} \text{ erg.}$$
 at 10^{19} eV

E² (dN/dE)

10¹⁹eV

•Total CR energy E_{CR} would be much larger dN/dE E^{-2} implies $E_{CR} \sim \ln(10^{12} \text{GeV/GeV}) E_{\text{HECR}}$ $\epsilon = 10^{51} \text{ ergs} \leq \mathcal{E}_{CR}^{\text{iso}} \leq 10^{55.5} \text{ ergs}$

Implications for Transient UHECR Sources

KM & Takami, ApJL, 690, L14 (2009)

Strategy for Transient Sources

"Transients should be considered as a possibility"

- What can we learn from UHECR obs.? (KM & Takami 2009, ApJL) Constraints on the energetics and local rate density
- But... identifying the sources are difficult for transients MFs lead to UHECR delay time of >~100-1000 yrs (GMF and MF in the vicinity of the source are sufficient)
- Neutrinos and γ rays from the source are more important

$$p + \gamma \qquad \pi^{\pm}, \pi^{0} + X \qquad p + p \qquad \pi^{\pm}, \pi^{0} + X$$
$$\pi^{\pm} \qquad \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) \qquad e^{\pm} + \nu_{e}(\overline{\nu}_{e}) + \nu_{\mu} + \overline{\nu}_{\mu} \qquad \pi^{0} \qquad 2\gamma$$

Calculation of High-Energy Emission

(e.g., KM 2007, PRD, 76, 123001; 2008, PRD(R), 78, 101302)

- Input (we here consider GRBs and AGNs) proton dis.: N(ε_p) ε_p⁻²exp(-ε/ε_p^{max}), photon dis.: based on obs., magnetic field B: parameter
- Meson production (pγ and pp) (based on exp. data, Geant4, and SIBYLL) multipion production is relevant for photon indices
- Cooling processes: syn., IC, ad., BH, pγ, pp, (photodis.) maximum energy is determined by (acc. time ~ ε_p/eBc) < (cooling time), (dyn. time) + Hillas meson cooling is important when t_{cool} < t_{decay}

Here, we focus on γ rays that are not cascaded in the source simple but sufficient for UHE γ rays in our typical cases

TeV-EeV Neutrinos

Neutrinos a good probe of proton acceleration TeV-EeV neutrinos may be detected by IceCube/KM3Net

- Ex: prompt emission of high- and low-luminous GRBs
 HL GRB: ~1 events @ z=0.1, LL GRB: ~0.2 events @ z=0.005
- Other possibilities (flares, afterglows...) (KM 2007, PRD)

The Cumulative Neutrino Background

Transients space and time coincidence atm. bkg. reduced Testing some of the predictions is possible (but not easy for others)

• **GRB prompt** (Waxman & Bahcall 97, KM+ 06), **early afterglow** (e.g., KM 07)

- AGN jet (flare/non-flare), Cluster (non-flare) (e.g., KM et al. 08)
- Newly born fast rotating magnetar (KM, Meszaros, & Zhang 09)

EeV Neutrinos?

Neutrinosa good probe of proton accelerationproof of UHECRs $E_V \sim 0.05Ep \sim 5 EeV (Ep/10^{20}eV)$

- Syn. cooling of π^{\pm} before decay >EeV suppressed
- IceCube (<100 PeV suitable); Auger (> EeV earth-skimming)
- >EeV neutrino detections are not so easy...

Gamma Rays

- 10 GeV-10 PeV γ rays cannot leave the source EM cascades in the source GeV-TeV γ rays leptonic or lower-energy CRs can contribute K. Asano
 UHE γ rays can escape from the source
- $E_{\gamma} \sim 0.1 E_{p} \sim 10 E_{e}V (E_{p}/10^{20} eV)$ proof of UHECRs

Mean Free Path and Energy Loss Length

Electromagnetic Cascades

- **Cascades in the highest energies**
- Klein-Nishina (like) leading particle effect Approx. energy cons. in γ e γ ... ($E_e \sim E_{\gamma} = E_{\gamma}/2$) Eff. loss length is ~10 times longer (~10-100 Mpc)
- EM cascades are treated in the rectilinear approx. (valid when MF in voids is weak enough)

$$\frac{\partial n_{e^-}(\gamma,t)}{\partial t} = Q(\gamma) + \frac{\partial}{\partial \gamma} \left\{ n_{e^-}(\gamma,t) [P_S(\gamma) + P_C(\gamma,t)] \right\} \quad \text{(same for e+)}$$

$$\frac{\partial n_{ph}(\varepsilon,t)}{\partial t} = R_S(\varepsilon,t) + R_C(\varepsilon,t) - R_P(\varepsilon,t) \quad \text{(e.g., Bhatacharjee \& Sigl 00, see also Protheroe 86, Lee 98)}$$

Spectra of UHE Gamma Rays

Ex.: low-luminous (LL) GRBs (another ex.: AGN flares) nearby GRBs were dim (980425@40Mpc, 060218@140Mpc) * Far LL GRBs (>>100 Mpc) cannot be seen by Swift/Fermi

cascaded (<10 EeV), cascaded + non-cascaded (>10 EeV)

Detectability

~10^{3.5}km²: D <~40 Mpc; ~0.3-3 photons@20 Mpc

~10^{5.5}km²: D <~75 Mpc; ~0.3-30 photons@40 Mpc

• There is room to expect such a lucky event at < 100 Mpc

General (KM & Takami 09): 10^{-3.5}-10/yr, HL GRB (Waxman 95): 10⁻³/yr

LL GRB (KM et al. 06), Giant AGN flare (Farrar & Gruzinov 09): 0.3-3/yr

Summary and Discussion

UHE *γ***: useful for identifying nearby UHECR sources**

- Especially important for transients (GRB, AGN) +all-sky monitor time and space coincidence anisotropy in UHE γ-ray background (difficult)
- Useful even for persistent sources (KM & Takami, in prep.)
 (UHE γ rays produced during UHECR propagation)
- GeV-TeV γ-ray echoes/haloes can be important

Bonus if UHE γ rays from the source are detected

- Clues to the radio background and MF in voids
- >1000 times stronger constraints on the LIV

On the Magnetic Fields

Q. UHECRs are delayed. How about UHE γ rays? A. Cascaded UHE γ rays have much shorter delay time.

- 10^{19.75} eV p delay time ~ 10²⁻³ yrs by the GMF (KM & Takami 09)
- 10^{19.75} eV p delay time > 100 yrs only by the structured MF
 - Ex.: filaments w. B_{st}=1-3 nG, $\lambda_{st,coh}$ =R=Mpc p delay time ~ 100-1000 yrs clusters w. B_{st}=0.1-0.3 µG, $\lambda_{st,coh}$ =R=Mpc

p delay time ~ 10⁶⁻⁷ yrs

- > 10¹⁹eV UHE γ rays have λ_{γγ} > 3 Mpc
 They may feel only the weak void MF (< nG)
- Void MFs can be very weak (even ~ 10^{-20} G is possible) B=10⁻¹³ G, λ_{coh} =kpc, D=50 Mpc UHE γ delay time ~ 10^3 s

Example: GRB Neutrinos

Examples: GRBs and AGN Jets

KM & Nagataki, PRD, 73, 063002 (2006); KM, loka, Nagataki, & Nakamura ApJ, 651, L5 (2006); KM & Nagataki, PRL, 97, 051101 (2006); KM, PRD, 76, 123001 (2007) etc.

•Unique probe of baryon acceleration and source models
•IceCube, KM3Net detection is possible especially for transients
•#~1-10/yr (optimistic), but #<1/yr (pessimistic) for 100TeV-100PeV

High-Energy Neutrinos

IceCube/KM3Net could detect the sources (especially if transient)

• GRB prompt (Waxman & Bahcall 97, KM+ 06), early afterglow (e.g., KM 07)

- AGN jet (flare/non-flare), Cluster (non-flare) (e.g., KM et al. 08)
- Newly born fast rotating magnetar (KM, Meszaros, & Zhang 09)