X International Conference on Hypernuclear and Strange Particle Physics

Tokai, September 14 - 18, 2009

DISTO data on K⁻pp

Marco Maggiora* for the DISTO collaboration P. Kienle, K. Suzuki and T. Yamazaki

* Dipartimento di Fisica ``A. Avogadro" and INFN - Torino, Italy

DISTO @ Saturne: polarised proton beam up to T = 2.9 Gev

- S170 magnet (< 14.7 KGauss, $\Delta \theta = \pm 120^{\circ}$, $\Delta \phi = \pm 20^{\circ}$)
- semi-cylindrical 1mm-square scintillating fibers triplets inside magnet
- MWPC planar triplets outside magnet
- scintillator hodoscopes vertically and horizontally segmented
- scintillator hodoscopes as polarimeter slabs
- doped water Cerenkov counters

Hyperon production @ DISTO

Reaction	${T}_{thr}$	Detected Prongs
$\vec{p} \ p \to p \ K^+ \vec{\Lambda}$	1.58	$p K^+ (p \pi^-)$
$\vec{p} \ p \to p \ K^+ \vec{\Sigma}^0$ $\vec{\Sigma}^0 \to \vec{\Lambda} \ \gamma$	1.79	$p K^+ (p \pi^-)$

GOAL: first exclusive (kinematically complete) measurements with a polarised beam for

$$\vec{pp} \to pK^+ \vec{Y}$$

(a)
$$T_p = 2.85 / 2.5 / 2.145 \text{ GeV}$$

Hyperon production @ DISTO

Reaction	${T}_{thr}$	Detected Prongs
$\vec{p} \ p \to p \ K^+ \vec{\Lambda}$	1.58	$p K^+(p \pi^-)$
$\vec{p} \ p \to p \ K^+ \vec{\Sigma}^0$ $\vec{\Sigma}^0 \to \vec{\Lambda} \ \gamma$	1.79	$p K^+ (p \pi^-)$
$\vec{p} p \rightarrow p K^+ \Sigma^{*0}_{(1385)}$	2.34	$p K^{+}(p \pi^{-}) \text{ from } \Lambda \pi^{0} \text{ or } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{+}(\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+} \pi^{-}(p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$
$\vec{p} p \rightarrow p K^+ \Lambda^*_{(1405)}$	2.40	$p K^{+} \pi^{+} (\pi^{-}) \text{ from } \Sigma^{-} \pi^{+}$ $p K^{+} (p \pi^{-}) \text{ from } \Sigma^{0} \pi^{0}$ $p K^{+} \pi^{-} (p) \text{ or } (\pi^{+}) \text{ from } \Sigma^{+} \pi^{-}$

Hyperon events' topology – Data @ 2.94, 3.31 and 3.67 GeV

Hyperon production: event selection

Kinematic region restricted to: -0.7 $\leq x_F \leq 0.9$, $p_T \leq 750~MeV/c$, $|cos~\phi_{_A}| < 0.7$

Additional cuts:

- π^+ veto
- $|\theta_{p,\Lambda}| < 0.15$ rad, decay proton momentum in LF
- p ID for positive track from decay vertex
- $\Delta p_{tot} < 1 \text{ GeV/c} \Rightarrow \text{missing a } \pi \text{ at most}$
- $|z_{V_R}| < 3.5 \text{ cm} \Rightarrow$ Klegecell veto
- $\overline{V_R V_D} > 4 \ cm$

Hyperon production: event selection

Kinematically constrained refit (the most effective cut!) \Rightarrow 1 d.o.f • $M_{\pi^- p} = M_{\Lambda}$ • $\vec{p}_A \parallel V_R \vec{V}_D$ \Rightarrow 2 d.o.f $\Delta M_{4B} = M_{\pi} \implies 1 \text{ d.o.f}$ • $\Delta M_{4B} = 0$ or $\vec{p} p \rightarrow p K^{+} \Sigma^{*0}_{(1385)}$ $\vec{p} p \rightarrow p K^{+} \Lambda^{*}_{(1405)}$ $\vec{p} p \rightarrow p K^+ \vec{\Lambda}$ $\vec{p} p \rightarrow p K^+ \vec{\Sigma}^0$

soft constraint on reaction vertex:

$$\frac{d^2 \left(\vec{v}_{reac}, \vec{b}(z_{reac}) \right)}{\sigma_d^2} \subset \chi_{min}^2$$

Hyperon production : event reconstruction

Data set: refitted events with low χ^2 χ^2 requirement on the refit: most effective cut M before refit ΔM_{pK} after refit πp 50000 a) b) $\Gamma_{\Lambda} = 35.8 \text{ MeV/c}^2$ 10000 $\Gamma_{\Sigma} = 24.0 \text{ MeV/c}^2$ 40000 8000 $\Gamma = 7.0 \text{ MeV/c}^2$ 30000 $\sigma_{\Lambda} = 15.2 \text{ MeV/c}^2$ $\sigma = 3.0 \text{ MeV/c}^2$ 6000 $\sigma_{\Sigma} = 10.2 \text{ MeV/c}^2$ 20000 4000 10000 2000 0 0 1.1 1.2 1 unrefitted $M_{p\pi}$ (GeV/c²) $\frac{1.4}{\Delta M_{pK}} \frac{1.6}{(\text{GeV/c}^2)}$ 1.2

Hyperon selection: ΔM_{pK} gates

Hyperon selection: ΔM_{pK} gates

Hyperon selection: ΔM_{pK} gates

Deviation distributions: raw data vs phase space simulations

Deviation plot: raw data / simulated data \rightarrow looking for deviation from uniform phase-space distribution

Angular distributions for the $pK^+\Lambda$ sample in the Λ gate

Interpreting^[1] DISTO data on K⁻pp

The pK⁺ Λ sample in the Λ gate: large-q_T protons

Selecting large- q_{T} protons:

$|\cos \theta_{\rm CM}(\mathbf{p})| < 0.6$

The pK⁺ Λ sample in the Λ gate: small-angle protons

^[1] T. Yamazaki and Y. Akaishi, private communications.

 $pK^+\Lambda$ deviation from uniform phase space distribution

$pK^+\Lambda$ deviation from uniform phase space distribution

$pK^+\Lambda$ deviation from uniform phase space distribution

Modelisation^[1] of a K⁻pp bound state

- short pp collision lenght
- K⁻pp: a very compact state
- large momentum transfer
- based on the $\Lambda^*(1405)$ Ansatz

Interpreting^[1] DISTO data on K⁻pp

Peak properties:

- $M = 2.267 \pm 0.002 \text{ GeV/c}^2$
- $\Gamma = 0.118 \pm 0.008 \text{ GeV/c}^2$ • SYMMETRIC!

• $B_{K} = 105 \pm 2 \text{ MeV/c}^2$

$$p+p \rightarrow K^{-}pp + K^{+} @ T_{p} = 3.0 \text{ GeV}$$

^[1] T. Yamazaki and Y. Akaishi, Phys Rev C76 (2007) 045201

Conclusions

DISTO **preliminary** experimental data: $\vec{p} \ p \rightarrow p \ K^+ \vec{\Lambda}$ @ T_p = 2.85 GeV

- \bullet deviation from uniformity in both $M_{_{p\Lambda}}$ and $\Delta M_{_K}$ spectra
- acceptance corrections in progress
- clean sample: low contamination from $\Sigma^0 \rightarrow \Lambda \gamma$ or pp $\rightarrow \pi$ -background
- full-efficiency corrections in progress: preliminarily the peak is confirmed!

Possible interpretation: is that a K⁻pp bound state?!?

- BK = 105 ± 2 MeV
- $\Gamma = 118 \pm 5 \text{ MeV}$
- deeper than predicted

NOT FINAL

• interpreted^[1] as strongly bound, dense system

^[1] T. Yamazaki and Y. Akaishi, Phys Rev C76 (2007) 045201

Question time

ありがとうございます。

pattern reconstruction and track fitting iteration: pattern recognition provides candidate for the fitting stage; input is the 12D coordinates vector \vec{x}

track fitting: 5D parameter vector \vec{p} (x,y): coordinates of the intersection point with z = 0a: inclination of track at z = 0 φ : starting angle in (x-z) plane $p_{xz} = \frac{1}{\sqrt{p_x^2 + p_z^2}}$: inverse momentum perpendicolar to B detector coordinates depend smootly on all parameters

4body event reconstruction @ DISTO

track fitting by lookup table: goal is inverting $\vec{x} = F(\vec{p})$ in $\vec{p} = G(\vec{x})$

look-up table:

5D lattice that provide for tracks \vec{x} track coordinates $F(\vec{p})$ consist in linear interpolation of the lattice to obtain \vec{p}

 χ^2 minimisation:

F inversion is performed minimizing:

$$\chi^{2}_{min} = \left| \sum_{j \in \{valid coords\}} \left(\frac{x_{j}^{m} - x_{j}(\vec{p})}{\sigma_{j}} \right)^{2} \right|_{min}$$

iteration stops if $\Delta \vec{p}$ do not change \vec{x} to nearest grid point

4body event reconstruction @ DISTO

kinematically constrained refit:

- global 4 tracks 2 vertices refit
- same approach, inversion of $\vec{x} = F(\vec{p})$
- More complex parameter 18 D \vec{p}
 - 3 (x_{12}, y_{12}, z_{12}) for reaction vertex
 - six $(\phi_1, a_1, p_{xz,1}, \phi_2, a_2, p_{xz,2})$ to describe momenta of the two track emerging from the reaction vertex
 - 3 (x_{12}, y_{12}, z_{12}) for decay vertex
 - six (ϕ_3 , a_3 , $p_{xz,3}$, ϕ_4 , a_4 , $p_{xz,4}$ to describe momenta of the two track emerging from the decay vertex
- 4 degrees of freedom are constrained kinematically

Hyperon production: reconstruction @ DISTO

kinematic constrains:

reconstructed Λ momentun parallel to the joiner of the reaction and decay verteces ⇒ 2 parameters
reconstructed M_{π⁻p} at decay vertex is M_Λ = 1.115 GeV/c²

 \Rightarrow 1 parameter • $\Delta M_{4B} = 0$ $(\vec{p} \, p \to p \, K^+ \vec{\Lambda} \text{ or } \vec{p} \, p \to p \, K^+ \vec{\Sigma}^0)$ or $\Delta M_{4B} = M_{\pi} (\vec{p} \, p \to p \, K^+ \vec{\Sigma}^*) \Rightarrow 1 \text{ parameter}$ 14D \vec{p} $\chi_{min}^{2} = \left| \frac{d^{2} \left| \vec{v}_{reac}, \vec{b}(z_{reac}) \right|}{\sigma_{d}^{2}} + \sum_{j \in \{valid \ coords\}} \left| \frac{x_{j}^{m} - x_{j}(\vec{p})}{\sigma_{j}} \right|^{2} \right|_{mi}$ soft" constraint on reaction vertex along the beam

Hyperon production: event selection

One of the most effective cuts in event selection is the kinematically constrained refit itself!

- $M_{\pi^- p} = M_{\Lambda}$
- $\vec{p}_{\Lambda} \parallel \vec{V}_R \vec{V}_D$
- $\Delta M_{4B} = 0$ or $\Delta M_{4B} = M_{\pi}$
- Additional cuts:
- π^+ veto

- Kinematic region restricted to: $-0.7 \le x_F \le 0.9$ $p_T \le 750 \text{ MeV/c}$ $|\cos \phi_A| < 0.7$
- $|\theta_{\pi,\Lambda}| < 0.15$ rad, decay proton momentum in LF
- p ID for positive track from decay vertex
- $\Delta p_{tot} < 1 \text{ GeV/c} \Rightarrow \text{missing a } \pi \text{ at most}$
- $|v_z| < 3.5 \text{ cm} \Rightarrow \text{Klegecell veto}$

Particle identification @ DISTO

particle identication: iterative process for tagging candidates

Particle identification @ DISTO

particle identication: combined Cerenkon and hodoscopes tagging

very small π^+ contamination in hyperon sample

pK⁺ Λ "background" distributions [1] (low q_T)

Modelisation^[1] of a K⁻pp bound state

^[1] T. Yamazaki and Y. Akaishi, Phys Rev C76 (2007) 045201

p-p distance = 2.0 fm

Modelisation^[1] of a K⁻pp bound state

Density distribution of K-N pair

^[1] T. Yamazaki and Y. Akaishi, Phys Rev C76 (2007) 045201