Shell-model structure of light hypernuclei

John Millener

Brookhaven National Laboratory

Source	# γ -rays	# doublets
Ge Hyperball	~ 22	9
NaI $^{13}_{\Lambda}\mathrm{C}$	3	1
NaI $^4_{\Lambda}{\rm H}/^4_{\Lambda}{\rm He}$	2	2

Parameters in MeV Δ S_{Λ} S_N TA = 7-?0.430-0.015-0.3900.030A = 11-160.330-0.015-0.3500.024

- 1. G-Matrix elements from $N\Lambda$ - $N\Sigma$ calculation fitted with sums of Gaussians, Yukawas, OBEP forms, ...
- 2. Hypernuclear two-body matrix elements calculated using Woods-Saxon wave functions.

		p-shell					s-sh	ell
		\overline{V}	Δ	S_{Λ}	S_N	T	\overline{V}_s	Δ_s
fit-djm	$^7_\Lambda { m Li}$	-1.142	0.438	-0.008	-0.414	0.031	-1.387	0.497
	$^{16}_{\Lambda}{ m O}$	-1.161	0.441	-0.007	-0.401	0.030		
nsc97f	$^7_\Lambda { m Li}$	-1.086	0.421	-0.149	-0.238	0.055	-1.725	0.775
esc04a	$^7_\Lambda { m Li}$	-1.287	0.381	-0.108	-0.236	0.013	-1.577	0.850

• First two lines show that matrix elements are roughly constant with A - same YNG interaction, WS wells have $R = r_0 A^{1/3}$, but rms radii of p-shell nuclei are roughly constant

		singlet	triplet	singlet	triplet			
		even	even	odd	odd	even	odd	in odd states
nsc97f	\overline{V}	-0.421	-0.834	0.070	0.102	-1.255	0.172	repulsive
	Δ					0.571	-0.148	
esc04a	\overline{V}	-0.421	-0.791	0.029	-0.100	-1.212	-0.072	strong spin
	Δ					0.632	-0.248	dependence
fit-djm	\overline{V}	-0.331	-0.701	-0.036	-0.069	-1.032	-0.105	attractive
	Δ					0.387	0.051	

- Most new YN models use some constraint to ensure a more attractive s-wave interaction than triplet to bind hypertriton, fit A=4 $0^+/1^+$ doublet, and Δ for p-shell hypernuclei.
- The p-wave central interaction is not constrained, but may be important along with Λ - Σ coupling to simultaneously fit data on s-shell and p-shell hypernuclei.
- Next two slides show an old example that puts some constraint on the exchange character of the central interaction.

$^{12}{ m C}(0^+,2^+) imes p_\Lambda { m \ states \ of \ }^{13}_\Lambda{ m C}$

 $B_{\Lambda} = 11.69 \pm 0.12 \text{ MeV}$ $3/2^{-}/1/2^{-}$ $E_{x} = 10.83/10.98 \text{ MeV}$

 ${}^{13}C(K^-,\pi^-){}^{13}_{\Lambda}C$ M. May et al., PRL 47, 1106 (1981)

Theory: E.H. Auerbach et al., PRL 47, 1110 (1981); Ann. Phys. 148, 381 (1983)

Basic data: Separation between 10.4 and 16.4 MeV peaks at 0° and shift in position of upper peak at 15° .

$^{13}_{\Lambda}\mathrm{C}$	nsc97f	esc04a	djm	Experiment
$1/2_2^ 1/2_1^-$	6.94	6.05	6.18	6.0 ± 0.4
$1/2_2^ 5/2_1^-$	2.18	1.23	1.37	1.7 ± 0.4

Woods-Saxon: p_{Λ} bound at 0.8 MeV

Odd-state tensor, even-state tensor, and Λ - Σ mixing work against one-body and two-body spin-orbit interactions in the "single-particle" p_{Λ} splitting. Mixing of $2^+ \times p_{\Lambda}$ into $0^+ \times p_{\Lambda}$ (typically 5%) also contributes to the spacing.

	$^{7}_{\Lambda}{ m Li}$	$^{8}_{\Lambda}{ m Li}$	$^9_\Lambda { m Li}$	$^9_{\Lambda}{ m Be}$	$^{10}_{\Lambda}{ m B}$	$^{11}_{\Lambda}{ m B}$	$^{12}_{\Lambda}{ m B}$	$^{13}_{\Lambda}{ m C}$	$^{15}_{\Lambda}{ m N}$	${}^{16}_{\Lambda}{ m N}$
	$1/2^{+}$	1-	$3/2^{+}$	$1/2^{+}$	1-	$5/2^{+}$	1-	$1/2^{+}$	$3/2^{+}$	1-
Λ - Σ	78	160	183	4	35	66	103	28	59	62
Δ	419	288	350	0	125	203	108	-4	40	94
S_{Λ}	0	-6	-10	0	-13	-20	-14	0	12	6
S_N	94	192	434	207	386	652	704	841	630	349
T	-2	-9	-6	0	-15	-43	-29	-1	-69	-45
Sum	589	625	952	211	518	858	869	864	726	412
Expt	5.58	6.80	8.50	6.71	8.89	10.24	11.37	11.69		13.76
		6.84	8.29		9.11					*
\overline{V}	-0.94	-1.02	-1.06		-1.05	-1.04	-1.05	-0.96		-0.93

 $\Lambda\text{-}\Sigma$ and spin-dependent contributions to ground-state binding energies

* $B_{\Lambda} = 13.76(16)$ MeV: F. Cusanno (Plenary 5)

To get a rough \overline{V} , take $B_{\Lambda}({}_{\Lambda}^{5}\text{He}) = 3.12$ MeV as s_{Λ} single-particle energy, and subtract sum from experimental B_{Λ} value.

Double one-pion exchange ΛNN interaction

Gal, Soper, and Dalitz: Ann. Phys. (N.Y.) 63, 53 (1971)

Independent of Λ spin. Averaged over s_{Λ} wave function gives

$$V_{NN}^{eff} = \sum_{klm} Q_{lm}^k(r_1, r_2) \left[\sigma_1, \sigma_2\right]^k \cdot \left[C_l(\hat{r}_1), C_m(\hat{r}_2)\right]^k \tau_1 \cdot \tau_2$$

Parameters in MeV						
Q_{00}^{0}	Q_{22}^{0}	Q_{22}^{1}	$Q_{02}^2 = Q_{20}^2$	Q_{22}^{2}		
0.026	1.037	-0.531	-0.049	0.245		

- Q_{00}^0 and Q_{22}^0 give repulsive contributions to B_{Λ} that depend quadratically on the number of p-shell nucleons in the core.
- Q_{22}^1 represents an anti-symmetric spin-orbit interaction that behaves rather like S_N

Shell-model calculations

- Both $|p^n \alpha_c J_c T \times s_\Lambda\rangle$ and $|p^n \alpha_c J_c T_c \times s_\Sigma\rangle$ configurations included. In general, T_c can take three values. E.g. for ${}^{10}_{\Lambda}$ Li, $T_c = 1/2, 3/2, 5/2$.
- Supermultiplet basis $|p^n[f_c]\beta_c(L_cS_c)J_cT_c\rangle$ is very good for p shell \Rightarrow states with different $[f_c]$ (often T_c) well separated. E.g. ~ 15 MeV for lowest $T_c = 1/2 \times \Sigma$ and $T_c = 3/2 \times \Sigma$ in $^{10}_{\Lambda}$ Li example.
- Easy, but not really necessary, to use all possible states in the diagonalization.
- Need NΛ-NΛ (parametrized, Δ,..), NΛ-NΣ (see following slides), and NΣ-NΣ (for T=1/2 and T=3/2; from YNG-type interaction) two-body matrix elements. All can be represented in the same way.
- Diagonal energies of Λ and Σ states differ by ~ 80MeV, plus core energy differences, plus contributions from YN interactions.

Ground-state doublet spacings of ${}^{10}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$ KEK E566 Hyperball2 Y. Ma (parallel 2-B)

 Λ - Σ coupling

$$\begin{array}{c} \gamma \text{ rays from KEK E566} \\ \text{BNL }^{10}\text{B}(3^+)(K^-, \pi^-\gamma)^{10}_{\Lambda}\text{B}(2^-) \\ \text{KEK }^{12}\text{C}(0^+)(\pi^+, K^+\gamma)^{12}_{\Lambda}\text{C}(1^-_2) \\ \text{Core nuclei }^9\text{B}, \, ^{11}\text{C similar} \\ \text{Particle-hole conjugates in p shell} \\ \text{Spacings of } 2^-/1^- (3/2^- \times s_{\Lambda}) \\ \text{doublets should be similar; mainly} \\ \text{due to } \Lambda N \text{ spin-spin interaction} \\ \end{array} \begin{array}{c} 2^{-00} \\ 2^{-00} \\ -0 \end{array} \begin{array}{c} 3^{-1} \\ 2^{-00} \\ -1^{-0} \end{array} \begin{array}{c} 3^{-1} \\ 2^{-00} \\ -1^{-0} \end{array} \begin{array}{c} 3^{-1} \\ 3^{-1} \\ -1^{-0} \end{array} \begin{array}{c} 3^{-1} \\ 3^{-1} \\ -1^{-0} \end{array} \begin{array}{c} 3^{-1} \\ 3^{-1} \\ -1^{-1} \end{array} \begin{array}{c} 3^{-1} \\ 3^{-1} \\ 3^{-1} \end{array} \begin{array}{c} 3^{-1} \end{array} \begin{array}{c} 3^{-1} \end{array}$$

Ground-state wave functions of ⁹B and ¹¹C for a variety of p-shell interactions. The columns labelled %L=1 and %L=2 give the total percentages of the given L with S=1/2.

	Interaction	L=1 - L=2	% [41]	%L=1	%L=2
${}^{9}\mathrm{B}$	fitd	0.919 - 0.343	96.2	84.7	13.0
	fit4	0.898 - 0.375	94.7	80.6	16.1
	CK616	0.925 - 0.317	95.7	85.9	12.3
	Otsuka	0.868 - 0.400	91.4	76.5	19.8
			% [43]		
$^{11}\mathrm{C}$	fitd	0.778 - 0.415	77.7	68.0	20.3
	fit4	0.734 - 0.520	81.0	60.8	29.3
	CK616	0.762 - 0.480	81.1	65.5	26.2
	Otsuka	0.737 - 0.463	75.7	63.7	25.4
SU3 K= $3/2$		$\sqrt{21/26} - \sqrt{5/26}$			
Coef. Δ				2/3	-2/5

Source	Interaction	\bar{V}'	Δ'	S'_{Λ}	S'_N	T'
Akaishi (s-shell)	NSC97e/f	1.45	3.04	-0.09	-0.09	0.16
Yamamoto	NSC97f	0.96	3.62	-0.07	-0.07	0.31
Halderson $*$	NSC97e	0.75	3.51	-0.45	-0.24	0.31
Halderson	NSC97f	1.10	3.73	-0.45	-0.23	0.30
Halderson	ESC04a	-2.30	-2.59	-0.17	-0.17	0.23

 $p_N s_\Lambda \Lambda - \Sigma$ coupling parameters from several of the Nijmegen baryon-baryon potentials.

* D. Halderson, Phys. Rev. 77, 034304 (2008).

- ${}^4_{\Lambda} \mathrm{H} / {}^4_{\Lambda} \mathrm{He} ~ 0^+ ~ \bar{V}'_s + 3/4 ~ \Delta'_s$
- ${}^4_{\Lambda}{
 m H}/{}^4_{\Lambda}{
 m He}$ 1⁺ $\bar{V}'_s 1/4 \Delta'_s$
- Effective central interaction from second-order tensor; ESC04 interactions have a peculiar radial behavior (see Halderson) but the overall strength is not so different from the other interacions (when resticted to the p shell).

	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	Т	ΔE
$^{12}_{\Lambda}\mathrm{C}$		0.529	1.446	0.038	-1.773	
	61	175	-22	-13	-42	$153 { m ~keV}$
$^{10}_{\Lambda}\mathrm{B}$		0.570	1.426	0.008	-1.100	
	-15	188	-21	-3	-26	120 keV

fitd p-shell interaction - nsc
97 $\Lambda\text{-}\Sigma$ coupling

CK616 p-shell interaction - esc04
a $\Lambda\text{-}\Sigma$ coupling

	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	Т	ΔE
$^{12}_{\Lambda}\mathrm{C}$		0.443	1.542	0.027	-2.145	
	111	146	-23	-9	-51	$167 { m ~keV}$
$^{10}_{\Lambda}\mathrm{B}$		0.575	1.422	0.015	-1.645	
	-88	190	-21	-5	-39	34 keV

Can write the central Λ - Σ coupling interaction as

$$\sqrt{4/3} t_N \cdot t_Y \bar{V}' + \sqrt{4/3} s_N \cdot s_Y t_N \cdot t_Y \Delta'$$

where the factor $\sqrt{4/3}$ arises from defining t_Y as an operator that changes a Λ into a $\Sigma \begin{bmatrix} 10 \\ \Lambda \end{bmatrix}$ Li - A. Umeya (parallel 2-B)].

The important Λ - Σ coupling matrix elements involve a Σ coupled to the ground and $1/2^{-}$ (L=1) states of the core.

Diagonal matrix element $\sqrt{4/3}\sqrt{T(T+1)}\overline{V} + a(J)\langle 3/2||\sum_i s_i t_i||3/2\rangle$ Off-diagonal matrix element $b(J)\langle 1/2||\sum_i s_i t_i||3/2\rangle$

		$^{10}_{\Lambda}{ m B}$	$^{12}_{\Lambda}{ m C}$
J = 1	$\langle 3/2^- \times \Sigma V 3/2^- \times \Lambda \rangle$	$\overline{V}-5/13~\Delta$	$\overline{V} + 5/13 \ \Delta$
	$\langle 1/2^- \times \Sigma V 3/2^- \times \Lambda \rangle$	$7/13\sqrt{2} \Delta$	$-7/13\sqrt{2} \Delta$
J = 2	$\langle 3/2^- \times \Sigma V 3/2^- \times \Lambda \rangle$	$\overline{V} + 3/13 \ \Delta$	$\overline{V} - 3/13 \ \Delta$

Actual shifts are not so large (previous slide) because of the contribution from the $1/2^- \times \Sigma$ configuration; the ${}^{12}_{\Lambda}$ C doublet spacing is substantially increased; at this level, the non-central Λ - Σ coupling components are also important.

¹² $C(e, e'K^+)^{12}_{\Lambda}$ B - can translate energies of 3 peaks into $^{12}_{\Lambda}$ C energies [Hall A/Hall C] $E_x(1^-_2) = [2.65 - 2.80]$ $E_x(1^-_3) = [6.05 - 6.23]$ The excited 1⁻ states are raised by S_N , but not enough to reproduce the new γ -ray and $(e, e'K^+)$ data.

KEK E518 ¹¹B ($\pi^+, K^+\gamma$) ¹¹AB

 ^{10}B core nucleus for $^{11}_{\Lambda}B$ $\uparrow \sim 9.3 \ 1^+$ $\begin{array}{c} 6.03 \\ 5.02 \\ \hline \end{array} \qquad \begin{array}{c} 4^+ \\ 2^+ \end{array}$ 5.16 _____ 2⁺; 1 5.18 ____(sd)² 1⁺ ~ ~ [42] (80) L=0, S=1 4.77 _____ 3+ $[42] \equiv (22) \quad L = 0, 2^2, 3, 4$ $3.59 - 2^+ T = 0, S = 1 T = 1, S = 0$ $1^+, 2^+, 3^+$ $K_L = 0$ L = 2, S = 1 triplet 2.15 _____ 1⁺ * $K_L = 2 L = 2, S = 1$ triplet widely spread by LS + ALS $1.74 - 0^+; 1$ $0.72 - 1^+ L = 0, S = 1$ $\begin{array}{ccc} 0 & \underline{} & 3^+ \\ K_L = 0 & K_L = 2 \end{array}$ $K_L = 0$

- See DJM, Nucl. Phys. A 804, 84 (2008) for more details on ¹⁰B and ¹¹_{Λ}B, in particular γ -ray intensities and lifetime limits in ¹¹_{Λ}B from KEK E518.
- In the next slide, the red arrows indicate the most certain assignments, the blue arrows correspond to observed γ -rays, and the green arrows indicate other branches of interest. The decay of the states in the upper $1/2^+/3/2^+$ doublet are complex.
- KEK E566 shows that the 505 keV γ -ray directly feeds the 1483 keV level.
- Data on E2/M1 mixing ratios in ¹⁰B implies that there is very small mixing of L=0 and L=2 in the core 1⁺ wave functions. The Barker, fit3, and fit4 interactions satisfy this requirement.
- The lowest $1/2^+$ is raised substantially (> 400 keV with respect to the $5/2^+$ gs by the action of S_N , but not nearly enough.

Speculations on the placement of ${}^{11}_{\Lambda}B \gamma$ rays.

Shell-model calculations for $^{11}_{~\Lambda}{\rm B}$

5317	$-3/2^+;1$	5361	5320	5338
2840 - 2511 - 2053 - 1988 - 505	$ \begin{array}{c} 1/2^+ \\ 3/2^+ \\ 1/2^+;1 \\ 3/2^+ \\ 1/2^+ \end{array} $	$2555 - 313 \\ 2242 - 313 \\ 1967 - 1443 - 1443 \\ 968 - 475$	2581	2587
$\begin{array}{r} 264 \\ 0 \\ \hline 264 \\ \hline \text{Expt} \end{array}$	$\frac{-7/2^+}{5/2^+}$ t.	$\begin{array}{c} 267 \\ 0 \\ \hline \\ Barker \end{array}$	$\begin{array}{c} 310 \\ 0 \\ \hline 310 \\ fit3 \end{array}$	$\begin{array}{r} 293 \\ 0 \\ \hline 293 \\ \text{fit}4 \end{array}$

$(sd)_N s_\Lambda$ matrix elements

		НО	WS	WS
	J	(b = 1.7 fm)	(BE = 3 MeV)	(BE = 1 MeV)
$\langle 1s_{1/2}s_{\Lambda} V 1s_{1/2}s_{\Lambda}\rangle$	0	-1.690	-0.977	-0.657
	1	-1.237	-0.724	-0.488
$\langle d_{3/2}s_{\Lambda} V 1s_{1/2}s_{\Lambda}\rangle$	1	-0.137	-0.097	-0.071
$\langle d_{3/2}s_{\Lambda} V d_{3/2}s_{\Lambda}\rangle$	1	-0.508	-0.487	-0.428
	2	-0.540	-0.512	-0.447
$\langle d_{5/2}s_{\Lambda} V d_{3/2}s_{\Lambda}\rangle$	2	0.140	0.129	0.109
$\langle d_{5/2}s_{\Lambda} V d_{5/2}s_{\Lambda}\rangle$	2	-1.133	-0.999	-0.866
	3	-1.065	-0.936	-0.811
BE of pair in ^{10}B		-2.16	-1.56	-1.23

Doublet spacings in p-shell hypernuclei

	J_u^π	J_l^{π}	$\Lambda\Sigma$	Δ	S_{Λ}	S_N	T	ΔE^{th}	ΔE^{exp}
$^{7}_{\Lambda}{ m Li}$	$3/2^{+}$	$1/2^{+}$	72	628	-1	-4	-9	693	692
$^7_\Lambda { m Li}$	$7/2^{+}$	$5/2^{+}$	74	557	-32	-8	-71	494	471
$^{8}_{\Lambda}{ m Li}$	2^{-}	1-	151	396	-14	-16	-24	450	(442)
$^9_\Lambda { m Li}$	$3/2_2^+$	$1/2^{+}$	-80	231	-13	-13	-93	-9	
$^{11}_{\Lambda}\mathrm{B}$	$7/2^{+}$	$5/2^{+}$	56	339	-37	-10	-80	267	264
$^{11}_{\Lambda}\mathrm{B}$	$3/2^{+}$	$1/2^{+}$	61	424	-3	-44	-10	475	505
$^{12}_{\Lambda}{ m C}$	2^{-}	1-	61	175	-12	-13	-42	153	161
$^{15}_{~\Lambda}{ m N}$	$3/2_2^+$	$1/2_{2}^{+}$	65	451	-2	-16	-10	507	481
$^{16}_{\Lambda}{ m O}$	1-	0-	-33	-123	-20	1	188	23	26
$^{16}_{\Lambda}{ m O}$	2^{-}	1_{2}^{-}	92	207	-21	1	-41	248	224

Remarks

- The nine observed doublets are fit remarkably well with the only caveat that the two doublets in ${}^{7}_{\Lambda}$ Li require a somewhat larger value of Δ .
- ${}^8_{\Lambda}$ Li is shown because the 1⁻ ground-state wave function involves substantial mixing (~ 11%) of configurations based on the 3/2⁻ and 1/2⁻ core states and this leads to an abnormally large $\Lambda\Sigma$ contribution for a T=1/2 core.
- In most cases, Δ and $\Lambda\Sigma$ coupling work in the same direction although the ratio of contributions varies substantially. ${}_{\Lambda}^{9}$ Li is shown because the contributions work in opposite directions, as in ${}_{\Lambda}^{10}$ B but giving a larger effect.
- ⁹_ΛLi, and some other interesting cases, could be reached using the (K⁻, π⁰γ) reaction, which is hopefully in J-PARC's future. Access to states reached via spin-flip amplitudes in the (K⁻, π⁻γ) reaction is in the near future at J-PARC.