Observation of antimatter hypernuclei at RHIC

Jinhui Chen^{a,b)} for the STAR Collaboration a) Kent State University b) Shanghai Institute of Applied Physics, CAS

10th International Conference on Hypernuclear and Strange Particle Physics "Hyp-X" September 14 - 18, 2009 Ibaraki, Japan

- ★ Introduction & Motivation
- ★ Our measurement
 - $-\frac{3}{\Lambda}\overline{H}$ and $^3_{\Lambda}H$ signal
 - Lifetime measurement
 - Production rate and particle ratio
- ★ Conclusions and Outlook

Introduction & Motivation

- ★ Hypernuclei: ideal lab for YN and YY interaction
 - Baryon-baryon interaction with strangeness sector
 - Input for theory describing the nature of neutron stars
- ★ No anti-hypernuclei have ever been observed
- Coalescence mechanism for production: depends on overlapping wave functions of Y+N at final stage
- \bigstar
 - Anti-hypernuclei and hypernuclei ratios: sensitive to antimatter and matter profiles in HIC
 - Extension of the nuclear chart into anti-matter with S^[1]

[1] W. Greiner, *Int. J. Mod. Phys. E 5 (1995) 1*

Relativistic Heavy-ion Collisions

- Initial condition of collisions
- New matter of state: QGP

STAR

Hadronization and hadronic interaction

★ RHIC creates hot and dense matter, containing about equal numbers of q and anti-q: ideal source of anti-nuclei.

RHIC white paper: Nucl. Phys. A 757

Relativistic Heavy Ion Collider (RHIC)

Animation M. Lisa

STAR Detector

 \star TPC: effectively 3-D ionization camera with over 50 million pixels.

STAR: a complex set of various detectors, a wide range of measurements and a broad coverage of different physics topics. STAR-TPC: <u>NIMA 499 (2003) 659</u>

STAR-detector: <u>NIMA 499 (2003) 624</u>

Event display

Figure 1: "Beam's eye view" of a typical event in the STAR detector when a ${}^{3}_{\overline{\Lambda}}\overline{H}$ candidate is produced. STAR's main tracking device reconstructs charged particle trajectories in 3-D; in this 2-D projection, the apparent track density is extremely large. The thick red line shows the ${}^{3}\overline{He}$ daughter while the blue line marks the π^{+} coming from the decay of the ${}^{3}_{\overline{\Lambda}}\overline{H}$ candidate (black dash line). Dashed lines represent extrapolated trajectories which are not observed directly in the detector.

Data-set and track selection

³He & anti-³He selection

Theory curve: Phys. Lett. B 667 (2008) 1

★ Select pure ³He sample: ³He: 5810 counts

anti-³He: 2168 counts

condition: -0.2<z<0.2 & dca<1.0cm & p>2 GeV/c...

$^{3}_{\Lambda}$ H signal from the data

\star Signal observed from the data (bin-by-bin counting): **157** \pm **30**;

STAR

Mass: 2.989 \pm 0.001 \pm 0.002 GeV; Width (fixed): 0.0025 GeV.

t Projection on anti-hypertriton yield: $\frac{3}{\Lambda}\overline{H} = \frac{3}{\Lambda}H \times \frac{3}{H}e^{/3}He = 157*2168/5810 = 59 \pm 11$

$\frac{3}{4}\overline{H}$ signal from the data

STAR

\star Signal observed from the data (bin-by-bin counting): **70** \pm **17**;

Mass: 2.991 \pm 0.001 \pm 0.002 GeV; Width (fixed): 0.0025 GeV.

Combined the signal

STAR

\star Combined hyperT and anti-hyperT signal : **225** \pm **35**;

It provides a $>6\sigma$ significance for discovery.

Measure the lifetime

Production rate

TABLE I: Particle ratios from Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}/c$. The ³He (³He) yield have been corrected for ³_AH ($^{3}_{\bar{A}}\bar{H}$) feed-down contribution.

Particle type	Ratio
$^3_{\bar\Lambda}\bar H/^3_{\Lambda}H$	0.49 ± 0.18 (stat.) \pm 0.07 (sys.)
$^{3}\bar{\mathrm{He}}/^{3}\mathrm{He}$	0.45 ± 0.02 (stat.) \pm 0.04 (sys.)
$^3_{\bar{\Lambda}}\bar{\rm H}/^3\bar{\rm He}$	$0.89\pm0.28~(\text{stat.})\pm0.13~(\text{sys.})$
$^3_{\Lambda}{\rm H}/^3{\rm He}$	$0.82\pm0.16~(\text{stat.})\pm0.12~(\text{sys.})$
	2 1 2

Coalescence => $\frac{3}{\overline{\Lambda}} \overline{\mathrm{H}} / \frac{3}{\Lambda} \mathrm{H} \propto (\overline{\mathrm{p}} / \mathrm{p})(\overline{\mathrm{n}} / \mathrm{n})(\overline{\Lambda} / \Lambda)$ $\frac{3}{\mathrm{He}} / \frac{3}{\mathrm{He}} \propto (\overline{\mathrm{p}} / \mathrm{p})^{2} (\overline{\mathrm{n}} / \mathrm{n})$

Tabulated ratios favor coalescence

A case for energy scan

Phase diagram plot: arXiv:0906.0630

Baryon-strangeness correlation: <u>PRL 95 (2005) 182301</u>, <u>PRC 74 (2006) 054901</u>, <u>PRD 73 (2006) 014004</u>.

- \star RHIC is scheduled to run Energy Scan beginning early 2010.
- Baryon-strangeness correlation via hypernuclei: a viable experimental signal to search for the onset of deconfinement.
 model calculation : arXiv:0908.3357

- ★ $\frac{3}{\Lambda}\overline{H}$ has been observed for first time; 70 candidates, with significance ~4 σ .
- ★ Consistency check has been done on ${}^{3}_{\Lambda}$ H analysis; 157 candidates, with significance better than 5 σ .
- The measured lifetime is $\tau = 182 \pm_{45}^{89} \pm 27$ ps, consistent with free Λ lifetime (263 ps) within uncertainty.
- ★ The $\frac{3}{\Lambda}\overline{H}/_{\Lambda}^{3}H$ ratio is measured as $0.49\pm0.18\pm0.07$, and $\frac{3}{He}/\frac{3}{4}$ He is $0.45\pm0.02\pm0.04$, favoring coalescence.

Outlook

🛧 Lifetime:

-baryon-strangeness correlation

- a case for energy scan
- establish trend from AGS-SPS-RHIC-LHC

★ ${}^{3}_{\Lambda}H \rightarrow d + p + \pi$ channel measurement: *d*-identification via ToF.

Search for other hypernucleus: ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ${}^{4}_{\Lambda\Lambda}$ H, ${}^{3}_{\Xi}$ H,

AGS-E906, Phys. Rev. Lett. 87, 132504 (2001)

\star Search for anti- α

★ RHIC: best antimatter machine ever built

Extension of the chart of the nuclides into anti-

Back-up

STAR Detector

