10th International Conference on Hypernuclear and Strange Particle Physics " Hyp X "

# The nature of ∧(1405) in chiral dynamics

### D. Jido (Yukawa Institute, Kyoto)

## **∧(I405)**

- excited state of  $\Lambda$  with J<sup>P</sup>=(1/2)<sup>-</sup>
- just below threshold of K<sup>bar</sup>N



- important for study of  $K^{\text{bar}}$  at subthreshold, bound kaon decay to  $\pi\Sigma$
- $\pi\Sigma$  and  $K^{\text{bar}}N$  dynamics

9.14~18, 2009

## Coupled-channels approach in chiral dynamics

### Chiral unitary model

### a powerful theoretical framework to describe hadronic resonances from hadron dynamics



low-energy effective theory of QCD give fundamental interaction of meson-baryon

#### scattering theory (N/D method) analyticity and unitarity general form of scattering amplitude

Lippmann-Schwinger eq.

$$T = V + VGT$$

$$\bar{K}N, \pi\Sigma, \eta\Lambda, K\Xi, \pi\Lambda, \eta\Sigma$$

#### reproduce K<sup>-</sup>p scattering generate dynamically s-wave ∧(1405) resonances

For example, Kaiser, Siegel, Weise, NPA594, 325 (95) Oset, Ramos, NPA635, 99 (98) Oller, Meissner, PLB500, 263 (01)



# Consequences of chiral unitary model

# 1. Λ(1405) is a superposition of two states having different properties

pole I: I390 MeV, width I32 MeV

strongly couples to  $\pi\Sigma$  state

pole 2: 1426 MeV, width 32 MeV

dominantly couples to K<sup>bar</sup>N state



Two state cannot be seen separately due to the widths.

Spectrum of  $\Lambda(1405)$  is given by interference of these poles.

DJ, Oller, Oset, Ramos, Meissner NPA725, 181 ('03)



# Double pole structure of $\Lambda(1405)$

#### reason of existence of two poles: two attractive channels in I=O

group theoretically SU(3) singlet and octet

physically

 $K^{\text{bar}}N$  and  $\pi\Sigma$ 



Hyp-X

#### - $\Lambda$ (1405) is essentially described by two channels, K<sup>bar</sup>N and $\pi \Sigma$ .

- in single channel without channel couplings

# K<sup>bar</sup>N bound state π Σ resonance

s-wave resonance in single channel due to energy-dependent potential

- coupled channel gives width to bound state

Hyodo, Weise, PRC77, 035204 ('08)



for physics on the real axis

### K<sup>bar</sup>N bound state and $\pi \Sigma$ strong correlation

are the ingredients of  $\Lambda(1405)$ . **Double pole structure** 

# Consequences of chiral unitary model

### 2. Resonance position of $\Lambda(1405)$ depends on channels

#### pole I: I390 MeV, width I32 MeV

strongly couples to  $\pi\Sigma$  state

### pole 2: 1426 MeV, width 32 MeV

dominantly couples to K<sup>bar</sup>N state

Due to the presence of two poles having different properties, the  $\pi\Sigma$  invariant mass spectrum (peak position of  $\Lambda(1405)$ ) depends on the initial channel.

# πΣ invariant mass spectrum (I=0) $\frac{d\sigma}{dM_{\pi\Sigma}} = A|T|^2 q_{\rm c.m}^{\pi\Sigma}$

The resonance positions depend on the channels by which  $\Lambda(1405)$  is produced.

#### Λ(1405) as K<sup>bar</sup>N quasibound state

 $1420 MeV \rightarrow binding energy 15 MeV$ 

 $1405 MeV \rightarrow binding energy 30 MeV$ 

#### the heights are adjusted



## peak at 1420MeV in K<sup>bar</sup>N channel

DJ, Oller, Oset, Ramos, Meissner, NPA725, 181 ('03)

# $\Lambda(1405)$ in K<sup>bar</sup>N channel

## Want to see Λ(1405) produced by K<sup>bar</sup>N !!

 $\Lambda(1405)$  is located below the K<sup>bar</sup>N threshold cannot be produced by direct reaction  $\ \bar{K}N \to \Lambda(1405)$  indirect reaction





flow of strangeness is clear

 $\Lambda(1405)$  is produced by  $K^{bar}N$ 



# $\Lambda(1405)$ in K<sup>bar</sup>N channel

Experiment bubble chamber initial K momentum 686 ~ 844 MeV/c  $\pi\Sigma$  invariant mass spectrum theoretical calculation in ChUM  $K^- d \to \pi^+ \Sigma^- n$ DJ, Oset, Sekihara, accepted in Eur.Phys.J.A. Braun et al. NPB129,1,('77) 1824 EVENTS Calc. d $\sigma$ /d $\mathsf{M}_{\pi\Sigma}$  [arbitrary unit] 200 (b) Data +  $\Lambda(1520)$ 160 120  $\Lambda(1405)$ 80 1360 1420 1440 1380 1400  $M_{\pi\Sigma}$  [MeV] 40. production cross section of  $\Lambda(1405)$ 385 μb @ 800MeV/c (exp. 410 ± 100 μb) 9.70 2.02 2.18 1.86 2.34 agrees with data in shape and size  $M (\Sigma^{-}\pi^{+})^{2} [GeV^{2}]$ bump around 1385 MeV is found to be from  $\Sigma^*$ inclusion of  $\Sigma^*$  does not distort the shape.

#### peak position 1420 MeV

Proposal of J-PARC experiment

H. Noumi, Poster MI5, today 7

Hyp-X

# Influence of $\pi\Sigma$ correlation to $\Lambda(1405)$

Model dependence of pole positions in chiral coupled channels approach



higher pole dominantly couples to K<sup>bar</sup>N less model-dependent around 1420 MeV constrained by K<sup>bar</sup>N scatt. data lower pole strongly couples to  $\pi\Sigma$ strongly model-dependent lack of  $\pi \Sigma$  scattering data need any data for  $\pi\Sigma$  scattering **BMN** 

Model calculation of I=0BNWORBHNJHBMN $\pi\Sigma$  scattering length (fm)0.5170.7890.6920.770

Ikeda, Hyodo, DJ, et al. in preparation

# How strong $\pi\Sigma$ interaction ?

#### More interesting question

 $\pi \Sigma$ : resonance or virtual state ??

 $\pi\Sigma$  interaction is attractive.

If attraction is unexpectedly enough strong, there could be a  $\pi \Sigma$  virtual state below threshold. In this case,  $\Lambda(1405)$  consists of single pole.

Energy-independent potentials also provide  $\pi\Sigma$  virtual states.

If virtual state exists

#### $\pi\Sigma$ scattering length ~ 5 fm

#### for $\pi\Sigma$ resonance case

Model calculation of I=0BNWORBHNJHBMN $\pi\Sigma$  scattering length (fm)0.5170.7890.6920.770

More systematic study will be public soon.

Ikeda, Hyodo, DJ, et al. in preparation

# Consequences of chiral unitary model

## 3. $\Lambda(1405)$ is a quasibound state of meson-baryon

#### a theoretical indication

the details are given in Hyodo' talk (Sep. 17, parallel session 2A)



 $\Lambda(1405)$  has mostly meson-baryon components.

Hyodo, Jido, Hosaka, PRC78, 025203 ('08)

# $\Lambda(1405)$ as quasibound state of hadrons

### I. large Nc behavior

Hyodo, DJ, Roca, PRD77, 056010 (2008) Roca, Hyodo, DJ, NPA809,65, (2008)

different scaling of the width from quark model

T. Hyodo, poster MI9, today



### 2. Electromagnetic radii



 $\Lambda(1405)$ : quasibound state of K<sup>bar</sup>N with 10~30 MeV

spatially extended

negative

almost real Kaon surrounding nucleon larger radius than neutron charge radius

 $\langle r^2 
angle_{
m E} = -0.12 ~ [{
m fm}^2]$  virtual pion cloud

**charge radius** K<sup>-</sup> spreads widely around proton

electromagnetic form factor of  $\Lambda(1405)$  in chiral unitary model  $\langle r^2 \rangle_{\rm E} = -0.13 + 0.30i ~ [{\rm fm}^2]$  moduls  $|\langle r^2 \rangle_{\rm E}| = 0.33 ~ [{\rm fm}^2]$ complex number remove decay chan.  $\langle r^2 \rangle_{\rm E} = -0.52 ~ [{\rm fm}^2]$ 

# Potential model for $\Lambda(1405)$

 $\Lambda(1405)$  : quasibound state with a small binding energy ~ 10-30 MeV

 $\Lambda(1405)$  can be described by single-channel potential model with  $\pi\Sigma$  decay channel in the imaginary part

 $\pi\Sigma$  coupled channel effect will be important, if binding energy is large.

| Hyodo-Weise potential (HW-HNJH)<br>derived from chiral dynamics<br>energy dependent, but small in energy of interest<br>resonance position ~ 1420 MeV                                                                    | PRC77,035204 (08)                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Akaishi-Yamazaki potential (AY)obtained phenomenologicallyI=0 : reproduce Λ(1405) as quasi-bound state of K <sup>bar</sup> Nmass: I405 MeV, width: 40 MeV                                                                | PRC64,044005 (02)                       |
| <b>K</b> <sup>bar</sup> <b>NN</b> one of the simplest nuclear system<br>later various models applied to this system<br>present achievement in theory : bound with larg<br>we have controversy over the binding energy an | Akaishi-Yamazaki<br>ge width<br>d width |

# *KKN* system with I=1/2, $J^P=1/2^+$



Result KK<sup>bar</sup>N N\* at 1910 MeV

 $K\bar{K}N$  is bound blow thresholds of  $\Lambda(1405)$ +K, a<sub>0</sub>(f<sub>0</sub>)+N

#### - loosely bound system

 B.E. from KK<sup>ber</sup>N
 width

 HW: I9 MeV
 88 MeV

 AY: 39 MeV
 98 MeV

sum of those of isolated two-particle systems

#### spatial structure



#### DJ, Y. Kanada-En'yo, **PRC78, 035203 (2008)**

Faddeev calculation also obtains this resonance A.M.Torres's Talk, 15 Sep.

Martinez Torres, Khemchandani, Oset, **PRC79**, 065207 (2009)





Hyp-X

#### r.m.s radius: **1.7 fm** hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei main decay modes $\pi \Sigma K$ from $\Lambda$ (1405) $\pi\eta N$ from a<sub>0</sub>(980) - coexistence of two quasi-bound Λ(1405)+K states keeping their characters a<sub>0</sub>(980)+N ∧(1405) a<sub>0</sub>(980) HW: I.9 fm HW: 2.1 fm AY: I.4 fm AY: 2.2 fm

## Nonmesonic decay of $\Lambda(1405)$ in nuclear matter

Kaonic nuclei = hadronic excitation of hypernuclei

 $\Lambda$ \* can be doorway of kaon absorption

Sekihara, DJ,Y. Kanada-En'yo, PRC79, 062201(R) (2009); Sekihara, parallel session 2-A

Hyp-X





# Summary

### $\Lambda(1405)$ is the gift of meson-baryon dynamics

- quasibound state of meson and baryon large spatial size
- double pole structure
  - strong attraction in K<sup>bar</sup>N and  $\pi \Sigma$  channels K<sup>bar</sup>N bound state and  $\pi \Sigma$  resonance
- resonance position depends on channels

 $K^-d 
ightarrow \Lambda(1405)n$  any information of  $\pi \Sigma$  (I=0) scattering

### $\Lambda$ (1405) in few-body systems

another example of kaon bound system: K<sup>bar</sup>KN a new N\* resonance N(1910) coexistence of A(1405)-K and a<sub>0</sub>(980)-N doorway state of K absorption Sekihara (Kyoto) Hyodo (Tokyo Tech.) Kanada-En'yo (YITP, Kyoto) Hosaka (RCNP, Osaka) Ikada (RIKEN & Tokyo)

Roca (Murcia) Oller (Murcia) Oset (Valencia) Ramos (Barcelona) Meißner (Bonn, Jülich)