High Resolution (e,e'K⁺) Spectroscopy at Jefferson Lab, Hall A

Francesco Cusanno, Excellence Cluster Universe, Technische Universitaet Muenchen, GermanyImmon behalf of Jefferson LabHall A Collaboration

🔸 Electroproduction of hypernuclei at Jefferson Lab

E94-107 Experiment(s) in Hall A

- Experimental equipment and setup
- $\boldsymbol{\cdot}$ Kaon identification \rightarrow RICH detector
- Analysis and results

+ Conclusions

Electroproduction of Hypernuclei

$$e^{A}Z \rightarrow e' + K^{+} + {}^{A}(Z-1)_{\Lambda}$$

Better energy resolution, smaller cross section

High luminosity, high duty cycle, excellent beam energy spread

Jefferson LAB, CEBAF Facility

Experimental Hall A – High Resolution Spectrometers HRS

QDQ - Momentum Range: 0.3 -4 GeV/c $\Delta p/p$: 1 x 10-4 - Δp = = -5% - $\Delta \Omega$ = 5 -6 mr

Experimental Hall A – High Resolution Spectrometers HRS

QDQ - Momentum Range: 0.3 -4 GeV/c $\Delta p/p$: 1 x 10-4 - Δp = = -5% - $\Delta \Omega$ = 5 -6 mr

E94-107 Experiment:

"High Resolution 1p Shell Hypernuclear Spectroscopy" spokespersons: F. Garibaldi, S. Frullani, J. Le Rose, P. Markowitz, T. Saito

Hall A Collaboration

Electroproduction of hypernuclei by the reaction:

$$e^{A}Z \rightarrow e' + K^{+} + {}^{A}(Z-1)_{\Lambda}$$

- Nuclear targets and resulting hypernuclei:
 - > ${}^{9}\text{Be} \rightarrow {}^{9}\text{Li}_{\Lambda}$ (spin doublets, information on s-s term of Λ-N interaction potential)
 - → ${}^{12}C \rightarrow {}^{12}B_{\Lambda}$ (comparison with previous data: better understanding of results with hadron probes and Hall C at Jefferson Lab)
 - \rightarrow ¹⁶O \rightarrow ¹⁶N_{Λ} (precise determination of Lambda binding energy)
- Experimental requirements:
 - 1. Excellent Energy Resolution
 - Detection at very forward angles (6° to obtain practical counting rates → septum magnets)
 - 3. Excellent Particle Identification (PID), unambiguous kaon selection → RICH

F. Cusanno, Hyp-X Conference, Tokai, Ibaraki, Japan, 15th of September, 2009

The choise of the Kinematics

$$\begin{split} & \mathsf{E}_{\text{beam}} = 4.016 \ (3.777) \ \text{GeV} \\ & \mathsf{P}_{k} = 1.98 \ (1.96) \ \text{GeV/c} \\ & \mathsf{P}_{e} = 1.80 \ (1.56) \ \text{GeV/c} \\ & \theta_{e} = \theta_{K} = 6^{\circ} \\ & \omega = E_{\gamma} \sim 2.2 \ \text{GeV} - Q^{2} = 0.079 \ (\text{GeV/c})^{2} \\ & \textbf{Beam current}: 100 \ \mu\text{A} \\ & \textbf{Target thickness}: 100 \ \text{mg/cm}^{2} \\ & \text{Counting Rates} \sim 2 -25 \ \text{counts/peak/hour} \end{split}$$

SOURCE	RESOLUTION	Error FWHM (key
beam	10 ⁻⁴ of 4 GeV (4 σ)	235
e'	10-4 of 1.8 GeV	180
k	10-4 of 1.9 GeV	190
k straggling	40 KeV	40
Total		≈ 350

Energy resolution

Kaon identification using Aerogel Threshold Cherenkov detectors

Small acceptance \rightarrow forward angles – Higher background

RICH detector $-C_6F_{14}/CsI$ proximity focusing RICH

RICH detector $-C_6F_{14}/CsI$ proximity focusing RICH

The RICH detector at Jefferson Lab

RICH photocathode installation

Rich Performances – 'key parameters':

Cherenkov angle for π

 $N_{pe} \pi/p$ ratio:

$$\frac{N_{clus}^{P}}{N_{clus}^{\pi}} = \frac{1 - \beta_{P}^{2} n^{2}}{1 - \beta_{\pi}^{2} n^{2}} = 0.66$$

Angular resolution:

$$\sigma_{g_c} \approx 5 \, mrad$$

Rich Performances – Particle Identification (PID):

π/K population ratio ≈ 100 Angular resolution $σ_{θ_c} ≈ 5 mrad$ Separation Power

$$\vartheta_{\pi} - \vartheta_{K} \approx 7\sigma_{\vartheta_{c}}$$

'Kaon selection': $\vartheta_{K} \pm 3\sigma_{\vartheta_{c}}$

JLAB Hall A E94-107: Results on ¹²C target

e-arm Vs hadron-arm "Time of Coincidence" spectrum and K selection

JLAB Hall A E94-107: Results on ¹²C target

Missing Energy Spectra

Results on ¹²C target – Hypernuclear Spectrum of ${}^{12}B_{\Lambda}$

JLAB Hall A E-94107: Results on waterfall target

JLAB Hall A E-94107: Results on waterfall target

F. Cusanno, Hyp-X Conference, Tokai, Ibaraki, Japan, 15th of September, 2009

Results on ¹⁶O target – Hypernuclear Spectrum of ${}^{16}N_{\Lambda}$

Results on ¹⁶O target – Hypernuclear Spectrum of ${}^{16}N_{\Lambda}$

Conclusions:

Experiment E94-107 at Jefferson Lab: systematics study of light hypernuclei (shell-p)

The experiment required important modifications on the Hall A apparatus

• Good quality data on ${}^{12}C$, ${}^{9}Be$ and ${}^{16}O$ targets (${}^{12}B_{\Lambda}$ and ${}^{9}Li_{\Lambda}$ and ${}^{16}N_{\Lambda}$)

New experimental equipments showed excellent performances

The RICH detector performed as expected and it is crucial in the kaon selection

Experiment E07-012 on angular dependence of ¹⁶O(e,e'K)¹⁶N_Λ scheduled in Hall A on Spring 2012

Solution For the second sec

Acknowledgements

Thanks to:

- Hyp-X Organizers, and O. Hashimoto and F. Garibaldi for their kind invitation
- Jefferson Lab, Hall A Collaboration and I.N.F.N. for making / supporting the experiments
- Excellence Cluster Universe and Technische Universitaet Muenchen for supporting my participation to the Conference
- finally

THANK YOU for your attention!

