Weak Decay of Hypernuclei: Theory Review and Perspectives

> **G. Garbarino** University of Torino

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 1)

OUTLINE

ii) Extraction of $\Gamma_2 = \Gamma(\Lambda N N \to n N N)$ from Data

iii) Weak Decay of S = -2 Hypernuclei

Conclusions

WEAK DECAY MODES OF HYPERNUCLEI

MESONIC

 $\begin{array}{cccc} \Lambda & \to & \pi^0 n & & \Gamma_{\pi^0} \\ \Lambda & \to & \pi^- p & & \Gamma_{\pi^-} \end{array}$

 $Q_{\rm M} = m_{\Lambda} - m_N - m_{\pi} \simeq 40 \text{ MeV} \implies p_N \simeq 100 \text{ MeV} < k_F^0 \simeq 270 \text{ MeV} \implies$ forbidden, by Pauli principle, in normal infinite nuclear matter

It occurs in finite nuclei, but largely suppressed in medium and heavy systems

– hyperon momentum distribution allows $p_N > 100 \text{ MeV}$

$$-\omega(\vec{q}) = \sqrt{\vec{q}^2 + m_{\pi}^{*2}} < \sqrt{\vec{q}^2 + m_{\pi}^2} \Longrightarrow p_N > 100 \text{ MeV}$$

- at the nuclear surface $k_F(r) < p_N$

• $\Gamma_M = \Gamma_{\pi^0} + \Gamma_{\pi^-}$ rapidly decreases with A

 Γ_M very sensitive to the in medium pion self-energy (significantly enhanced by the actractive P-wave part) \Longrightarrow information on the pion-nucleus optical potential

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 3) NON-MESONIC

One-nucleon induced

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 4) • Only possible in nuclei: the only practical way to get information on Baryon–Baryon Weak Interactions

• $Q_{\rm NM} = m_{\Lambda} - m_N \simeq 176 \text{ MeV} \Longrightarrow \text{large } p_N \ (p_N \simeq 410 \text{ MeV for } 1N\text{-induced})$

- overcoming the Pauli blocking \implies the non-mesonic weak decay dominates over the mesonic one for all but the *s*-shell hypernuclei

– non–mesonic channel mediated by Heavy Mesons $(\pi + \rho + K + K^* + \omega + \eta + 2\pi + 2\pi/\rho + 2\pi/\sigma + ...)$ and/or Quark Exchange

Study of $\Gamma_n \equiv \Gamma(\Lambda n \to nn)$ and $\Gamma_p \equiv \Gamma(\Lambda p \to np)$: Spin– and Isospin–dependence (validity of the $\Delta I = 1/2$ rule)

♦ Anticorrelation between Mesonic and Non–Mesonic decay modes: $\Gamma_{\rm T} = \Gamma_{\rm M} + \Gamma_{\rm NM} \text{ quite stable from light to heavy hypernuclei}$

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 6)

OTHER S = -1 HYPERNUCLEI?

♦ Σ -Hypernuclei

Only ${}_{\Sigma}^{4}$ He exist, V_{Σ} repulsive The rapid $\Sigma N \to \Lambda N$ strong reaction prevents the observation of the much slower $\Sigma N \to NN$ weak decay

S = -2 HYPERNUCLEI

♦ Ξ -Hypernuclei

The $\Xi N \to \Lambda \Lambda$ strong conversion prevents the observation of the $\Xi N \to \Lambda N$ and $\Xi N \to \Sigma N \ \Delta S = 1$ weak decays

• $\Lambda\Lambda$ –Hypernuclei

Weak decays: $\Lambda\Lambda \to \Lambda n$, $\Lambda\Lambda \to \Sigma N$, $\Lambda\Lambda \to nn$ Very difficult to detect: $\Gamma_{\Lambda\Lambda} \simeq \Gamma_{\Lambda}^{\text{free}}/(25 \div 60)$

Actual possibility of performing *both* theoretical and experimental studies on Baryon–Baryon Weak Interactions $\iff \Lambda$ –Hypernuclei

MODELS FOR CALCULATION

Finite Nucleus: Mesonic Decay

[K. Itonaga, T. Motoba, H. Bando, NPA 489, 683 (1988)]

[J. Nieves, E. Oset and C. Garcia-Recio, NPA 554, 509 (1993)]

$$\mathcal{H}^W_{\Lambda\pi N} = iGm_\pi^2 \overline{\psi}_N (A + B\gamma_5) \vec{\tau} \cdot \vec{\phi}_\pi \psi_\Lambda$$

$$\Gamma_{\pi^{0}(\pi^{-})} = c_{\pi^{0}(\pi^{-})} (Gm_{\pi}^{2})^{2} \sum_{N>F} \int \frac{d\vec{q}}{(2\pi)^{3} 2\omega(\vec{q})} 2\pi \,\delta[E_{\Lambda} - \omega(\vec{q}) - E_{N}] \\ \times \left\{ A^{2} \left| \int d\vec{r} \phi_{\Lambda}(\vec{r}) \phi_{\pi}(\vec{q},\vec{r}) \phi_{N}^{*}(\vec{r}) \right|^{2} + \frac{B^{2}}{4m_{N}^{2}} \left| \int d\vec{r} \phi_{\Lambda}(\vec{r}) \vec{\nabla} \phi_{\pi}(\vec{q},\vec{r}) \phi_{N}^{*}(\vec{r}) \right|^{2} \right\}$$

Shell Model Λ and nucleon wave functions, ϕ_{Λ} and ϕ_N

Pion wave function, ϕ_{π} , solution of the Klein–Gordon equation with proper pion–nucleus optical potential V_{opt} :

$$\left\{ \vec{\nabla}^2 - m_{\pi}^2 - 2\omega V_{\text{opt}}(\vec{r}) + \left[\omega - V_C(\vec{r}) \right]^2 \right\} \phi_{\pi}(\vec{q}, \vec{r}) = 0$$

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 8)

Finite Nucleus: Non–Mesonic Decay

[J. F. Dubach, G. B. Feldman and B. R. Holstein, Ann. Phys. 249, 146 (1996)]
 [A. Parreno, A. Ramos and C. Bennhold, PRC 56, 339 (1997)]

[C. Barbero, D. Horvat, F. Krmpotic, T.T.S. Kuo, Z. Narancic, D. Tadic, PRC66, 055209 (2002)]

Shell Model Nuclear (Ψ_R) and Hypernuclear (Ψ_H) wave functions used to compute:

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 9)

Finite Nucleus: Quarks

Hybrid Model: long range interactions ⇒ hadronic degrees of freedom (OPE) short range interactions ⇒ 6-quark cluster model [C.-Y. Cheung, D. P. Heddle and L. S. Kisslinger, PRC 27, 335 (1983) [D. P. Heddle and L. S. Kisslinger, PRC 33, 608 (1986)]

Direct Quark Model combined with OME $(\pi + K + \sigma)$

[T. Inoue, M. Oka, T. Motoba and K. Itonaga, NPA 633, 312 (1998)]
[K. Sasaki, T. Inoue and M. Oka, 669, 331 (2000); NPA 678, 455(E) (2000)]

- Baryon-baryon short range repulsion from quark exchange between baryons (quark antisymetrization)
- Naturally includes both $\Delta I = 1/2$ and $\Delta I = 3/2$ contributions

• Main uncertainty from the parameterization of the effective 4–quark weak Hamiltonian

Nuclear Matter in LDA

[E. Oset, L.L. Salcedo, NPA 443, 704 (1985)]

- Many–Body technique for nuclear matter calculations, extended to finite nuclei via the LDA
- Unified picture of Mesonic and Non–Mesonic decay channels, equivalent to the finite nucleus approach

Nuclear Matter

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 11)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 12)

LDA

Local Fermi See of nucleons:

$$k_F(\vec{r}) = \left\{ \frac{3}{2} \pi^2 \rho(\vec{r}) \right\}^{1/3}$$

$$\Gamma_{\Lambda}(\vec{k}) = \int d\vec{r} \, |\psi_{\Lambda}(\vec{r})|^2 \Gamma_{\Lambda} \left[\vec{k}, \rho(\vec{r}) \right]$$

$$\Gamma_{\Lambda} = \int d\vec{k} \, |\tilde{\psi}_{\Lambda}(\vec{k})|^2 \Gamma_{\Lambda}(\vec{k})$$

Phenomenological Approach to the 2N-induced channel
 [W.M. Alberico, A. De Pace, M. Ericson and A. Molinari, PLB 256, 134 (1991)]
 * [A. Ramos, E. Oset and L. L. Salcedo, PRC50, 2314 (1994)]

Data on pion absorption in nuclei

* Phase space argument for the 2p2h configurations

 $\Lambda np \rightarrow nnp$

* $\Gamma_2/\Gamma_{\rm NM} = 0.16$

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 13)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 14) **G. Garbarino** University of Torino **THE RATIO** Γ_n/Γ_p

For many years, a sound theoretical explanation of the large experimental values of $\frac{\Gamma_n}{\Gamma_p}$ $\underline{\Gamma(\Lambda n \to nn)}$ has been missing Γ_n/Γ_p 1.5 0.5 0 2 $^{12}_{\Lambda}C$ < year 2003 $^{5}_{\Lambda}$ He Theory Experiment Theory strongly underestimated Experiment! [W. M. Alberico and G. G., Phys. Rep. 369, 1 (2002)] [E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 41, 191 (1998)]

> Weak Decay of Hypernuclei: Theory Review and Perspectives (page 15)

Theory The One–Pion–Exchange (OPE) model predicts very small ratios: $\left[\frac{\Gamma_n}{\Gamma_n}\right]^{\text{OPE}} \left({}_{\Lambda}^{5}\text{He}, {}_{\Lambda}^{12}\text{C}\right) = 0.1 \div 0.2$ $[\Delta I = 1/2 \text{ rule} + \text{strong tensor component } \Lambda N(^3S_1) \rightarrow nN(^3D_1) \text{ requiring}$ $I_{nN} = 0 \iff N = p$ but reproduces the observed total non-mesonic rates $\Gamma_{\rm NM} = \Gamma_n + \Gamma_p(+\Gamma_2)$ Other Interaction Mechanisms beyond the OPE should then be responsible for the overestimation of Γ_p and the underestimation of Γ_n Heavier Mesons $(\rho, K, K^*, \omega, \eta, 2\pi, 2\pi/\rho, 2\pi/\sigma)$ [Parreño et al., Itonaga et al., Jido et al., Krmpotic et al.] Direct Quark Mechanism [Oka et al.] Two–Nucleon Induced Mechanism [Alberico et al., Ramos et al., Bauer et al.] Nucleon Final State Interactions [Ramos et al., Garbarino et al.]

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 18)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 19)

	$^{5}_{\Lambda}{ m He}$	$^{12}_{\Lambda}{ m C}$	
Sasaki et al. (2002)			
$\pi + K + DQ$	-0.68		
Parreño et al. (2002)			
$OME = \pi + \rho + K + K^* + \omega + \eta$	-0.68	-0.73	
Barbero et al. (2005)			
$OME = \pi + \rho + K + K^* + \omega + \eta$	-0.54	-0.53	
Alberico et al. (2005)	0.40	0.27	
OME + FSI Chumillas et al. (2007)	-0.40	-0.37	
O(TE + CE + CE) + D(TE + CE)		0.100	
$OME + 2\pi + 2\pi/\sigma + FSI$	+0.028	-0.126	
Itonaga et al. (2007)			
$\pi + K + \omega + 2\pi/\rho + 2\pi/\sigma + \rho\pi/a_1 + \sigma\pi/a_1$	+0.083	+0.045	
KEK-E508		$-0.16\pm0.28^{+0.18}_{-0.00}$	
KEK-E462	$+0.07\pm0.08^{+0.08}_{-0.00}$		
\rightarrow Importance of the Scalar-Isoscalar channel in Asymmetry calculations			
OME + TPE: Agreement also with the Decay Rate data for both ${}^{5}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ C!			
An Effective Field Theory approach ($\pi + K$ + Leading–Order Contact Interactions) predicted a dominance of Spin– and Isospin–Independent contact terms [A. Parreño, C. Bennhold and B.R. Holstein, PRC70, 051601 (2004)]			

PERSPECTIVES

♦ Recent Experimental and Theoretical developments have brought to a solution of the long–standing puzzles on Γ_n/Γ_p and the Decay Asymmetry

OME + TPE reproduces all data (no exotic mechanisms and $\Delta I = 3/2$ contributions)

- ✤ However, improvements in Experiment and Theory are necessary to achieve a detailed understanding of the Non–Mesonic Weak Decay reaction mechanisms
 - Obtain an accurate determination of Partial Decay Rates and Asymmetries
 - Still model-dependendent results in OME and DQ calculations (unknown weak meson-baryon-baryon couplings, validity of $\Delta I = 1/2$ rule)

i) s-shell Hypernuclei and the $\Delta I = 1/2$ Rule

♦ Block–Dalitz Phenomenological Model \implies Spin–Isospin structure of $\Lambda N \rightarrow nN$

◆ Introducing the rates R_{NJ} for the spin-singlet (R_{n0}, R_{p0}) and spin-triplet (R_{n1}, R_{p1}) elementary $\Lambda N \to nN$ interactions:

$$\Gamma_{\rm NM}(^{3}_{\Lambda}{\rm H}) = (3R_{n0} + R_{n1} + 3R_{p0} + R_{p1}) \frac{\rho_{2}}{8}$$

$$\Gamma_{\rm NM}(^{4}_{\Lambda}{\rm H}) = (R_{n0} + 3R_{n1} + 2R_{p0}) \frac{\rho_{3}}{6}$$

$$\Gamma_{\rm NM}(^{4}_{\Lambda}{\rm He}) = (2R_{n0} + R_{p0} + 3R_{p1}) \frac{\rho_{3}}{6}$$

$$\Gamma_{\rm NM}(^{5}_{\Lambda}{\rm He}) = (R_{n0} + 3R_{n1} + R_{p0} + 3R_{p1}) \frac{\rho_{4}}{8}$$

• Relations which test the $\Delta I = 1/2$ Rule

$$\frac{\Gamma_n({}^4_{\Lambda}\text{He})}{\Gamma_p({}^4_{\Lambda}\text{H})} = \frac{\frac{\Gamma_n}{\Gamma_p}({}^4_{\Lambda}\text{H})\frac{\Gamma_n}{\Gamma_p}({}^4_{\Lambda}\text{He})}{\frac{\Gamma_n}{\Gamma_p}({}^5_{\Lambda}\text{He})} = \frac{R_{n0}}{R_{p0}} \iff \Delta I = 1/2 \text{ Rule}: \quad \frac{R_{n1}}{R_{p1}} \le \frac{R_{n0}}{R_{p0}} = 2$$

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 22) • $\Gamma_{\rm NM}(^{5}_{\Lambda}{\rm He}) = 0.411 \pm 0.024$ $\frac{\Gamma_n}{\Gamma_n}(^{5}_{\Lambda}{\rm He}) = 0.3 \pm 0.1$ (KEK): $\Delta I = 1/2$ rule Experiment $\Gamma_{\rm NM}(^{4}_{\Lambda}{\rm He}) = 0.25^{+0.04}_{-0.01} \iff 0.177 \pm 0.028 \text{ (BNL-E788)}$ $\Gamma_{\rm NM}(^4_{\Lambda}{\rm H}) = 0.08^{+0.03}_{-0.02} \iff 0.17 \pm 0.11 \text{ (KEK)}$ \implies violation of the $\Delta I = 1/2$ rule? Too early to conclude! • E22@J-PARC: precise measurement of Γ_n and Γ_p for ${}^4_{\Lambda}$ H and ${}^4_{\Lambda}$ He [Poster by Ajimura] Also important: demonstration of the reliability of Block–Dalitz Model

ii) Extraction of $\Gamma_2 = \Gamma(\Lambda N N \to n N N)$ from Data

Theoretical analysis of KEK Coincidence Data only establishes a correlation property between Γ_n/Γ_p and Γ_2/Γ_1

[G. G., A. Parreño, A. Ramos, PRL 91, 112501 (2003); PRC 69, 054603 (2004)]

KEK-E462 ¹²_AC:
$$\frac{N_{nn}}{N_{np}} = 0.4 \pm 0.1$$
 ($T_N > 30$ MeV, $\cos \theta_{NN} \le -0.8$)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 24)

iii) Weak Decay of S = -2 Hypernuclei \clubsuit Ξ and $\Lambda\Lambda$ Hypernuclei • $\Xi^- p \to \Lambda \Lambda$ strong conversion produces $\Lambda \Lambda$ hypernuclei ◆ Hyperon–Induced Non–Mesonic Weak Decay $-\Lambda\Lambda \to \Lambda n \quad \Lambda\Lambda \to \Sigma^0 n \quad \Lambda\Lambda \to \Sigma^- p \quad (\Delta S = 1)$ $-\Lambda\Lambda \rightarrow nn \quad (\Delta S = 2)$ $-\Gamma_{\Delta S=1}(^{6}_{\Lambda\Lambda}\text{He})/\Gamma_{\Lambda}=0.017$ [1], 0.026 [2], 0.040 [3] [1] K. Sasaki, T. Inoue and M. Oka, NPA 726, 349 (2003) [2] K. Itonaga, T. Ueda and T. Motoba, NPA 691, 197c (2001) [3] A. Parreño, A. Ramos and C. Bennhold, PRC 65,015205 (2002) ◆ KEK-E373: NAGARA event [H. Takahashi et al., PRL 87, 212502 (2001)] - Production of ${}^{6}_{\Lambda\Lambda}$ He ($\Lambda\Lambda$ interaction is weakly attractive) - Recent observation of a Weak Decay to $\Sigma^- p \ (BR^{exp} \simeq 0.01)$ [T. Watanabe et al., EPJA 33, 265 (2007)] $\Lambda\Lambda \to \Sigma^- p$ (but $BR^{\text{th}} \simeq 0.001$) $H(uuddss) \rightarrow \Sigma^{-}p \ (BR^{\text{th}} \simeq 0.01)$ [J.F. Donoghue, E. Golowich and B.R. Holstein, PRD 34, 3434 (1986)] $\Lambda\Lambda \to H \to \Sigma^- p$? New investigations: E07@J–PARC, PANDA@FAIR [Plenary Talk by Gianotti]

CONCLUSIONS

♦ Reasonable agreement obtained between Experiment and Theory on Decay Rates (Γ_{NM} and Γ_n/Γ_p) and Asymmetries: The Scalar–Isoscalar mechanism is essential in Asymmetry calculations

 $\Gamma_{\rm NM}(^{5}_{\Lambda}{\rm He})/\Gamma_{\Lambda} \sim 0.4 \ \Gamma_{\rm NM}(^{12}_{\Lambda}{\rm C})/\Gamma_{\Lambda} \sim 0.9$ (good agreement Exp – Th)

 $\frac{\Gamma_n}{\Gamma_p} {5 \choose \Lambda} \text{He} \sim \frac{\Gamma_n}{\Gamma_p} {12 \choose \Lambda} \text{C} \sim 0.3 \div 0.5 \qquad \text{(data error bars, model dependencies)}$ $a_{\Lambda} {5 \choose \Lambda} \text{He} \sim 0 \div 0.2 \quad a_{\Lambda} {12 \choose \Lambda} \text{C} \sim -0.1 \div +0.3 \quad \text{(data error bars, model dependencies)}$

- Improved models and measurements essential to achieve a detailed understanding of the reaction mechanisms for the Non–Mesonic Weak Decay
- s–shell Hypernuclei and the $\Delta I = 1/2$ rule
- Extraction of $\Gamma_2 = \Gamma(\Lambda N N \to n N N)$ from Data
- Weak Decay of S = -2 Hypernuclei

Still a lot of work to do: various theoretical groups and experiments (E07, E18 and E22@J-PARC, FINUDA@DAPHNE, HypHI@GSI, PANDA@FAIR)

ADDITIONAL SLIDES

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 28)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 29)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 30)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 31)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 32)

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 33)

Number of primary nn and np pairs:

$$N_{nn}^{\rm wd} \propto \Gamma_n \qquad N_{np}^{\rm wd} \propto \Gamma_p$$

Denoting with N_{nn} and N_{np} the number of nucleons emitted by the nucleus:

	$\frac{\Gamma_n}{\Gamma_p} \equiv \frac{\Gamma(\Lambda n \to nn)}{\Gamma(\Lambda p \to np)} \equiv \frac{N_{nn}^{\text{wd}}}{N_{np}^{\text{wd}}} \neq \frac{N_{nn}}{N_{np}} = R_2 \left(\Gamma_2, \text{FSI}\right)$					
Tabl	Table 1: N_{nn}/N_{np} for ${}_{\Lambda}^{5}$ He and ${}_{\Lambda}^{12}$ C (cos $\theta_{NN} \leq -0.8$ and $T_{N}^{th} = 30$ MeV)					
		$^{5}_{\Lambda}$ He		$\frac{12}{\Lambda}$ C	л /л	
		N_{nn}/N_{np}	Γ_n/Γ_p	N_{nn}/N_{np}	Γ_n/Γ_p	
	OPE	0.25	0.09	0.24	0.08	
	OME	0.51	0.34	0.39	0.29	
	KEK–E462	$0.45 \pm 0.11 \pm 0.03$				
	KEK-E508			0.40 ± 0.10		

Data from B. H. Kang et al., PRL 96, 062301 (2006); M. J. Kim et al., PLB 641, 28 (2006); H. Outa, NPA 754, 157c (2005)

A weak–decay–model independent analysis of Γ_n/Γ_p

Total number of NN pairs emitted per NMWD:

$$N_{nn} = \frac{N_{nn}^{1\text{Bn}}\Gamma_n + N_{nn}^{1\text{Bp}}\Gamma_p + N_{nn}^{2\text{B}}\Gamma_2}{\Gamma_n + \Gamma_p + \Gamma_2}$$
$$N_{np} = \frac{N_{np}^{1\text{Bn}}\Gamma_n + N_{np}^{1\text{Bp}}\Gamma_p + N_{np}^{2\text{B}}\Gamma_2}{\Gamma_n + \Gamma_p + \Gamma_2}$$

which define the six weak–decay–model independent quantities: N_{nn}^{1Bn} (the number of nn pairs emitted per neutron–induced NMWD), etc.

From a measurement of N_{nn}/N_{np} and appropriate values for Γ_2/Γ_1 :

$$\frac{\Gamma_n}{\Gamma_p} = \frac{N_{nn}^{1\mathrm{Bp}} + N_{nn}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1} - \left(N_{np}^{1\mathrm{Bp}} + N_{np}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}\right)\frac{N_{nn}}{N_{np}}}{\left(N_{np}^{1\mathrm{Bn}} + N_{np}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}\right)\frac{N_{nn}}{N_{np}} - N_{nn}^{1\mathrm{Bn}} - N_{nn}^{2\mathrm{B}}\frac{\Gamma_2}{\Gamma_1}}$$

• From KEK data we obtained:

$$\begin{array}{c|c} {}^{5}_{\Lambda} \mathrm{He} \\ \hline \Lambda & \Gamma_{n} / \Gamma_{p} = 0.26 \pm 0.11 \\ \hline \Gamma_{2} & \Gamma_{2} = 0.20 \, \Gamma_{1} \\ \hline \Gamma_{2} = 0.20 \, \Gamma_{1} \\ \hline \Gamma_{2} = 0.20 \, \Gamma_{1} \\ \hline \Gamma_{2} = 0.39 \pm 0.11 \\ \hline \Gamma_{2} = 0.25 \, \Gamma_{1} \\ \hline \Gamma_{n} / \Gamma_{p} = 0.38 \pm 0.14 \\ \hline \Gamma_{2} = 0 \\ \hline \Gamma_{2} = 0.25 \, \Gamma_{1} \\ \hline \Gamma$$

Weak Decay of Hypernuclei: Theory Review and Perspectives (page 36)

Asymmetry: OME + Nucleon FSI [W. M. Alberico, G.G., A. Parreño and A. Ramos, PRL 94, 082501 (2005)]					
OME =	$OME = \pi + \rho + K + K^* + \eta + \omega$				
$I(\theta) = I_0 \left[1 + p_\Lambda a_\Lambda \cos \theta \right] \qquad I^{\rm M}(\theta) = I_0^{\rm M} \left[1 + p_\Lambda a_\Lambda^{\rm M} \cos \theta \right]$					
	$^5_{\Lambda}{ m He}$	$^{11}_{\Lambda}{ m B}$	$^{12}_{\Lambda}\mathrm{C}$		
a_Λ	-0.68	-0.81	-0.73		
$a_{\Lambda}^{\mathrm{M}} \left(T_p \geq 30 \ \mathrm{MeV} ight)$	-0.46	-0.39	-0.37		
$a_{\Lambda}^{\mathrm{M}} \left(T_p \geq 50 \mathrm{MeV} ight)$	-0.52	-0.55	-0.51		
$a_{\Lambda}^{\mathrm{M}} \left(T_p \geq 70 \mathrm{MeV} ight)$	-0.55	-0.70	-0.65		
KEK-E462	$0.07 \pm 0.08^{+0.08}_{-0.00}$				
KEK-E508	$-0.16\pm0.28^{+0.18}_{-0.00}$				
Data from [T. Maruta et al., EPJA 33, 255 (2007)]					

	-	F		
Model	$\Gamma_{\rm NM} = \Gamma_n + \Gamma_p$	$\Gamma_n^{\mathrm{o}}/\Gamma_p$	a_Λ	
OME	0.379	0.474	-0.590	
OME+TPE	0.388	0.415	+0.041	
OME+TPE+FSI			+0.028	
KEK–E462	0.424 ± 0.024	$0.40 \pm 0.11 \ (1N)$	$+0.07\pm0.08^{+0.08}_{-0.00}$	
		$0.27 \pm 0.11 \ (1N + 2N)$		
	-			
	I	12 C		
Model	$\Gamma_{\rm NM} = \Gamma_n + \Gamma_p$	Γ_n/Γ_p	a_Λ	
OME	0.667	0.357	-0.698	
OME+TPE	0.722	0.366	-0.207	
OME+TPE+FSI			-0.126	
KEK-E508	0.940 ± 0.035	$0.38 \pm 0.14 \; (1N)$	$-0.16\pm0.28^{+0.18}_{-0.00}$	
		$0.29 \pm 0.14 \ (1N + 2N)$		
KEK–E307	0.828 ± 0.087			
✤ Moderate change of the Decay Rates, huge influence on the Asymmetries!				
• Agreement with <i>both</i> Asymmetry and Decay Rate data for <i>both</i> 5 He and 12 Cl				

$^5_\Lambda { m He}$	OME	OME + TPE	OME	OME + TPE
$A: {}^1S_0 \to {}^1S_0$	-0.1044	+0.0835	AE -0.2854	+0.2112
$B: {}^1S_0 \to {}^3P_0$	+0.0057	+0.0057	BC + 0.0027	-0.0033
$C: {}^{3}S_{1} \rightarrow {}^{3}S_{1}$	-0.1399	+0.1480	BD - 0.0029	-0.0027
$D: {}^3S_1 \rightarrow {}^3D_1$	-0.1814	-0.1814	CF - 0.0856	+0.0405
$E: {}^{3}S_{1} \rightarrow {}^{1}P_{1}$	+0.3833	+0.3833	DF - 0.2186	-0.2046
$F: {}^3S_1 \rightarrow {}^3P_1$	+0.2234	+0.2234		
$\Gamma_p = \sum_{\alpha = A \dots F} \alpha ^2$	0.257	0.275	a_{Λ} -0.590	+0.041
• Spectroscopic notation: $\Lambda p(^{2S+1}L_J) \to np(^{2S'+1}L'_J)$				
• $OME \rightarrow OME + TPE$:				
- Drastic change of the Scalar–Isoscalar amplitudes A and C				
-AE interference changes sign and cancels the DF contribution				

Perspectives: "Exotic" Hypernuclei

- ♦ Neutron– and Proton–Rich $({}^{6}_{\Lambda}H, {}^{9}_{\Lambda}He; {}^{7}_{\Lambda}Be, {}^{8}_{\Lambda}C)$
 - $-\Gamma_n/\Gamma_p$ for extreme N/Z
 - Effects of (low-density) Neutron and Proton Halos on NMWD
 - Present and Future searches:

KEK and FINUDA: formation probability studies (upper limits) HypHI@GSI: in-flight decays, no surrounding target $(T_N^{\text{th}} \rightarrow 0)$ J-PARC: E10

Nuclotron@JINR (Dubna): relativistic hypernuclei

- Medium and Heavy: A > 11 (saturation property of $\Gamma_{\rm NM}$)
 - KEK: saturation at $\Gamma_{\rm NM}(^{28}_{\Lambda}{\rm Si} ^{56}_{\Lambda}{\rm Fe}) \simeq 1.2$, in agreement with Theory
 - COSY-13@Juelich: p + A, A = Au, Bi and U targets, measurement of fragments from fission induced by NMWD, no direct identification of hypernuclear formation $\Gamma_{\rm NM}(A \simeq 180 - 225) = 1.81 \pm 0.14$
 - CEBAF@JLAB: proposal for high–precision measurement of lifetime of heavy hypernuclei?