Properties of hyperons in covariant chiral perturbation theory

J. Martin Camalich

in collaboration with

L. S. Geng, L. Alvarez-Ruso and M. J. V. Vacas

IFIC, Spain

September 15, 2009

OUTLINE

Introduction

- Introduction to $\chi {\rm PT}$
- Power Counting in $B\chi PT$
- Inclusion of the decuplet-resonances
- 2 Baryon Magnetic Moments
 - Introduction
 - Results on Octet MMs and Comparison
 - Contributions of decuplet resonances at NLO
- 3 Predictions of χ PT on decuplet MDMs
- 0 Hyperon Semileptonic Decays: Determination of V_{us}
 - The hyperon decay form factors and V_{us}
 - Determination of V_{us} in relativistic ChPT
- 5 Conclusions and Outlook

Introduction to χ PT: Summary

- QCD-the theory of the strong interaction:
 - very successful at high energy (PQCD);
 - problematic at the region below 1 GeV (instead of LQCD).
- ChPT: Effective field theory of the QCD in the low-energy limit: (Weinberg, Gasser and Leutwyler, ...)
 - Exploits the symmetries of the QCD Lagrangian and ground state;
 - Develops the Green functions according to the perturbative QFT techniques;
 - Perturbative parameters: external momenta or masses that are small compared with the chiral symmetry breaking scale ($\Lambda_{ChSB} \simeq 1$ GeV).
- **Power Counting**: Order in the perturbative expansion:
 - Establishes a hierarchy among the infinite Feynman diagrams contributing to a particular Green function.
- **ChPT** has been extremely successful in the mesonic sector and calculations up to $\mathcal{O}(p^6)$ have become standard.

J. Martin Camalich @ HypX (Tokai)

Baryon χ PT and power counting: Problems & Solutions

- Baryon mass M₀: New large scale
- Diagrams with arbitrarily large number of loops contribute to lower orders
 >Power Counting is lost!

(Gasser et al.)

- Heavy Baryon χ PT (Jenkins & Manohar):
 - Non-relativistic expansion: Considers $M_0 \simeq \Lambda_{ChSB}$;
 - Recovers the power counting pattern of meson $\chi {\sf PT}.$
- Relativistic Baryon χ PT:
 - Power counting breaking pieces: Analytical structure!;
 - Two remarkable schemes:
 - Infrared baryon χPT (Becher and Leutwyler);
 - EOMS-scheme (Gegelia, Japaridze and Scherer).

Inclusion of the Decuplet-resonances

- **Motivation**: We perform perturbations on $m_K/\Lambda_{\chi SB} \sim 0.5$ that is over the scale for the onset of Decuplet resonances $\frac{M_D M_B}{\Lambda_V s_B} \sim 0.3$.
- Problem of consistency
 - Rarita-Schwinger (RS) representation of relativistic 3/2-fermions: $\psi^{\mu}(x)$. RS is a field with 16 components of which only 8 (4 massless) are "physical".
 - How to introduce couplings to the RS spinor that don't activate 1/2 modes? Field-redefinition formalism: Consistent couplings "equivalent" to phenomenological ones. V. Pascalutsa.
- Problem of higher-order divergencies

$$s^{lphaeta}(p) = rac{p+m}{m^2-p^2} \left[g^{lphaeta} - rac{1}{D-1} \gamma^{lpha} \gamma^{eta} - rac{1}{(D-1)m} (\gamma^{lpha} p^{eta} - \gamma^{eta} p^{lpha}) - rac{D-2}{(D-1)m^2} p^{lpha} p^{eta}
ight]$$

- RS propagator has a problematic high-energy behavior.
- Higher-order ∞ 's regularized in $\overline{MS} \rightarrow \text{Regularization-scale}(\mu)$ dependence.
- Problem of power-counting breaking
 - We use the EOMS-scheme and also obtain the HB limit (ϵ -expansion)

Magnetic moments (MM) of the baryon octet: Introduction

- The general vertex can be parameterized by two form factors: $\langle \psi(p')|J^{\mu}|\psi(p)\rangle = |e|\bar{u}(p')\Big\{\gamma^{\mu}F_1(t) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(t)\Big\}u(p).$
- At $q^2=0$: $F_1(0)=Q$ (charge), $F_2(0)=\kappa$ (anomalous magnetic moment).
- The fermion (baryon) MM: $\mu \equiv (Q + \kappa) \frac{|e|}{2M}$
- SU(3)-flavor symmetry⇒Coleman-Glashow relations:

$$\begin{split} \mu_{\Sigma^+} &= \mu_p, \qquad \mu_{\Lambda} = \frac{1}{2}\mu_n, \qquad \mu_{\Xi^0} = \mu_n, \\ \mu_{\Sigma^-} &= -(\mu_n + \mu_p), \qquad \mu_{\Xi^-} = \mu_{\Sigma^-}, \qquad \mu_{\Lambda\Sigma^0} = -\frac{\sqrt{3}}{2}\mu_n, \end{split}$$

• The octet-baryons MM are very well measured quantities!

Baryon-Octet MM: Numerical results at NLO

L.S.Geng, JMC, L. Alvarez-Ruso, M.J. Vicente Vacas, PRL 101,222002 (2008)

	р	n	٨	Σ^{-}	Σ^0	Σ^+	Ξ-	Ξ^0	$\Lambda\Sigma^0$	$\tilde{\chi}^2$
C-G	2.56	-1.60	-0.80	-0.97	0.80	2.56	-0.97	-1.60	1.38	0.46
HB	3.01	-2.62	-0.42	-1.35	2.18	0.42	-0.70	-0.52	1.68	1.01
IR	2.08	-2.74	-0.64	-1.13	0.64	2.41	-1.17	-1.45	1.89	1.83
EOMS	2.60	-2.16	-0.64	-1.12	0.64	2.41	-0.93	-1.23	1.58	0.18
Exp.	2.79	-1.91	-0.61	-1.16		2.46	-0.65	-1.25	1.61	

• Study of the convergence of the chiral series (LO and NLO):

 $\begin{aligned} \mu_p &= 3.47 \ (1-0.257) \,, \quad \mu_n = -2.55 \ (1-0.175) \,, \quad \mu_\Lambda = -1.27 \ (1-0.482) \,, \\ \mu_{\Sigma^-} &= -0.93 \ (1+0.187) \,, \quad \mu_{\Sigma^+} = 3.47 \ (1-0.300) \,, \quad \mu_{\Sigma^0} = 1.27 \ (1-0.482) \,, \\ \mu_{\Xi^-} &= -0.93 \ (1+0.025) \,, \quad \mu_{\Xi^0} = -2.55 \ (1-0.501) \,, \quad \mu_{\Lambda\Sigma^0} = 2.21 \ (1-0.284) \,. \end{aligned}$

• The Covariant EOMS (MS) NLO-calculation improves the C-G relations!

J. Martin Camalich @ HypX (Tokai)

Baryon octet MM:Inclusion of the Decuplet-resonances

		B			γ 5 – . B D	$a = \frac{1}{B} + \frac{1}{B}$	D B			
	p	п	٨	Σ^{-}	Σ^0	Σ^+	Ξ-	Ξ^0	$\Lambda\Sigma^0$	$\tilde{\chi}^2$
C-G	2.56	-1.60	-0.80	-0.97	0.80	2.56	-0.97	-1.60	1.38	0.46
HB-O	3.01	-2.62	-0.42	-1.35	2.18	0.42	-0.70	-0.52	1.68	1.01
HB-OD	3.47	-2.84	-0.17	-1.42	1.77	0.17	-0.41	-0.56	1.86	2.58
C-0	2.60	-2.16	-0.64	-1.12	0.64	2.41	-0.93	-1.23	1.58	0.18
C-OD	2.61	-2.23	-0.60	-1.17	0.59	2.37	-0.92	-1.22	1.65	0.22
Exp.	2.79	-1.91	-0.61	-1.16		2.46	-0.65	-1.25	1.61	—

• Par. C=1.0, $M_B = 1.151$ GeV, $M_D = 1.428$ GeV, $F_{\phi} \simeq 1.17F_{\pi}$, $\mu=1$ GeV

- In the covariant framework the NLO-decuplet contributions are small!
- The problem of consistency has also been investigated:

L.S.Geng, JMC, M.J. Vicente Vacas, PLB 676,63 (2009)

Predictions of $B\chi PT$ on the MDMs of the decuplet at NLO

The results for the Δ⁺⁺ and Δ⁺ are compatible with PDG values:

 $\mu_{\Delta^{++}} = 5.6 \pm 1.9 \mu_{\text{N}}$, $\mu_{\Delta^{+}} = 2.7^{+1.0}_{-1.3} \pm 1.5 \pm 3 \mu_{\text{N}}$

and the latest experiment $\mu_{\Delta^{++}} = 6.14 \pm 0.51 \,\mu_N$ Lopez Castro et al.(2001)

• The HB result for
$$\Delta^{++}$$
 is $\mu_{\Delta^{++}} = 7.94 \mu_N$

 More details and results for EQMs, MOMs and charge radii: L.S.Geng, JMC, M.J. Vicente Vacas PRD80, 034027 (2009)

J. Martin Camalich @ HypX (Tokai)

Hyperon Semileptonic Decays (HSD)

• Electronic: $I = e, \nu = \overline{\nu}_e$

B_1 B_2
$\Lambda \longrightarrow p$
$\Sigma^{-} \longrightarrow n$
$\Xi^- \longrightarrow \Lambda$
$\overline{ \Xi^0 \longrightarrow \Sigma^+ }$

$$L^{lpha} = \overline{\psi}_{e} \gamma^{lpha} (1 - \gamma_{5}) \psi_{\nu_{e}}$$
; $J_{lpha} = V_{lpha} - A_{lpha}$
 $V_{lpha} = V_{us} \overline{u} \gamma_{lpha} s$; $A_{lpha} = V_{us} \overline{u} \gamma_{lpha} \gamma_{5} s$

$$\langle B_2 | V_{\alpha} | B_1 \rangle = V_{us} \bar{u}_{B_2} \left[f_1(q^2) \gamma_{\alpha} + f_2(q^2) \frac{\sigma_{\alpha\beta} q^{\beta}}{M_1 + M_2} + f_3(q^2) \frac{q_{\alpha}}{M_1 + M_2} \right] u_{B_1}$$

$$\langle B_2 | A_{\alpha} | B_1 \rangle = V_{us} \bar{u}_{B_2} \left[g_1(q^2) \gamma_{\alpha} + g_2(q^2) \frac{\sigma_{\alpha\beta} q^{\beta}}{M_1 + M_2} + g_3(q^2) \frac{q_{\alpha}}{M_1 + M_2} \right] \gamma_5 u_{B_1}$$

HSD observables and form factors

• To first order in
$$\beta = (M_1 - M_2)/M_1$$
:

$$R \sim V_{us}^2 \left(f_1^2 + 3g_1^2 - 4\beta g_1 g_2 \right)$$

- To know V_{us}, V_{ud} with accuracy allows to check SM (CKM unitarity) (M. Kobayashi and T. Maskawa 1/2 Nobel Prize in Physics 2008)
- Measurements of R + Knowledge of f_1 , g_1 and $g_2 = V_{us}$!!
 - g_1 can be extracted from measured ratios g_1/f_1
 - f_1 protected by Ademollo-Gatto (A-G) theorem: $\delta f_1 = \mathcal{O}(eta^2)$
 - g₂ = 0 in SU(3)-symmetry.
 SU(3)-breaking effects expected (e.g. Sasaki et al.(2009),...)
- Accurate determination of V_{us} requires a reliable calculation of $f_1(0)$
- In ChPT the A-G theorem forbids unknown LECs up to $\mathcal{O}(p^5)$
- Goal: Calculate $f_1(0)$ in relativistic ChPT and give a prediction of V_{us} L.S.Geng, JMC, M.J. Vicente Vacas, PRD **79**, 094022 (2009)

ChPT calculation of $f_1(0)$

- The internal baryons belong to the octet or decuplet multiplets
- At LO the contributions to $f_1(0)$ are given by g_V

$$\Sigma^- \to n: -1, \quad \Lambda \to p: -\sqrt{\frac{3}{2}}, \quad \Xi^- \to \Lambda: \sqrt{\frac{3}{2}}, \quad \Xi^0 \to \Sigma^+: 1$$

Corrections up to NNLO $\mathcal{O}(p^4)$ are due to loops \rightarrow Pure prediction

• Higher-order scale dependence gives an estimation of systematical error: 0.7GeV $\leq \mu \leq 1.3$ GeV

• Results of V_{us} for each channel

Channel	Λр	Σ^- n	$\Xi^- \Lambda$	$\Xi^0 \Sigma^+$	
f_1/g_V	1.002±0.012	$1.088 {\pm} 0.036$	$1.039 {\pm} 0.024$	$1.017 {\pm} 0.020$	
Vus	0.2217±0.0042	$0.2090 {\pm} 0.0083$	$0.228 {\pm} 0.011$	$0.2124{\pm}0.0053$	

• Averaged result for V_{us} from hyperon decays in ChPT:

$$\begin{split} &V_{us}^{Unit.} = 0.2265 \pm 0.0011 \\ &V_{us}^{SU(3)} = 0.2250 \pm 0.0027 \text{ Cabibbo et al. (2004)} \\ &V_{us}^{N_c} = 0.2199 \pm 0.0026 \text{ Flores-Mendieta. (2004)} \\ &V_{us}^{ChPT} = 0.2176 \pm 0.0029 \text{ Geng et al. (2009)} \end{split}$$

• These results are to be compared with other determinations ... From $K \rightarrow \pi l \nu$ decays $V_{us} = 0.2233 \pm 0.0028$ Jamin et al. (2004) From τ decays $V_{us} = 0.2165 \pm 0.0026$ Gamiz et al. (2005) From the f_K/f_{π} ratio $V_{us} = 0.2219 \pm 0.0025$ Aubin et al. (2004)

Conclusions and Outlook

- Chiral perturbation theory
 - Effective field theory of QCD at low energies
 - Exploits the spontaneous ChSBightarrowDynamical relevance of π ,K and η 's
 - Power Counting provides an organization principle in perturbations of ϵ/Λ_{ChSB}
- Relativistic BChPT (EOMS) calculations:
 - Incorporates (higher-order) relativistic corrections, consistent with analyticity
 - Decuplet resonances explicitly included
- Phenomenological applications to hyperon's properties
 - Baryon magnetic moments \rightarrow Improvement over Coleman-Glashow relations \rightarrow Predictions on $\Delta(1232)$ electromagnetic structure
 - ullet Hyperon semileptonic decaysightarrowAllows for an accurate determination of V_{us}
- Outlook: Analysis of the IQCD results and experimental data
 - The octet- and decuplet-baryon masses and sigma-terms
 - The meson-baryon-baryon couplings
 - Improve the extraction of V_{us} including g_2 and other form factors

EOMS BChPT results: Graphical comparison

 $x \equiv m/m_{phys}$ with m the meson masses

- The three approaches agree in the vicinity of the chiral limit.
- IR and EOMS coincide up to $x \sim 0.4$. IR description then get worse.
- Shaded area(s) represent the variation 0.8GeV $\leq M_0 \leq 1.1$ GeV.
- EOMS provides a realistic SU(3)-breaking mechanism for MM!

J. Martin Camalich @ HypX (Tokai)

Baryon octet MM: Uncertainties in decuplet contributions

- Improvement over CG for 0.7 GeV $\leq \mu \leq \!\! 1.3$ GeV
- ullet Smooth dependence on the average baryon mass ($\delta=0.231$ GeV)
- The decuplet contributions vanish at $\delta \to \infty$: Decoupling of the decuplet
- Covariant O.+D. NLO-calculation improves the C-G relations!

Numerical details of the calculation of $f_1(0)$

• Separation of results in partial contributions

	$0-\delta^{(2)}$	$\text{O-}\delta^{(3)}$	O-Total	$D-\delta^{(2)}$	$D-\delta^{(3)}$	D-Total	0+D Total
$\wedge N$	-3.8	$0.2^{+1.2}_{-0.9}$	$-3.6^{+1.2}_{-0.9}$	0.7	$3.0^{+0.1}_{-0.1}$	$3.7^{+0.1}_{-0.1}$	$+0.1^{+1.3}_{-1.0}$
ΣΝ	-0.8	$4.7^{+3.8}_{-2.8}$	$3.9^{+3.8}_{-2.8}$	-1.4	$6.2^{+0.4}_{-0.3}$	$4.8^{+0.4}_{-0.3}$	$+8.7^{+4.2}_{-3.1}$
ΞΛ	-2.9	$1.7^{+2.4}_{-1.8}$	$-1.2^{+2.4}_{-1.8}$	-0.02	$5.2^{+0.4}_{-0.3}$	$5.2^{+0.4}_{-0.3}$	$+4.0^{+2.8}_{-2.1}$
ΞΣ	-3.7	$-1.3\substack{+0.3 \\ -0.2}$	$-5.0\substack{+0.3 \\ -0.2}$	0.7	$6.0^{+1.9}_{-1.4}$	$6.7^{+1.9}_{-1.4}$	$+1.7^{+2.2}_{-1.6}$

 $\delta^{(i)}$ are the leading (1) and next-to-leading(2) fraction of SU(3)-breaking in %

• Comparison with other approaches

	ΒχΡΤ	$HB\chiPT^*$	Large <i>N_c</i>	QM	χ QM	IQCD
ΛN	$+0.1^{+1.3}_{-1.0}$	+5.8	$+2\pm2$	-1.3	+0.1	
ΣΝ	$+8.7^{+4.2}_{-3.1}$	+9.3	$+4\pm3$	-1.3	+0.9	$-1.2\pm2.9\pm4$
ΞΛ	$+4.0^{+2.8}_{-2.1}$	+8.4	$+4\pm3$	-1.3	+2.2	
ΞΣ	$+1.7^{+2.2}_{-1.6}$	+2.6	$+8\pm5$	-1.3	+4.2	-1.3 ± 1.9