

Study of the $\Lambda(1405)$ Resonance in Proton Induced Reactions

Laura Fabbietti Excellence Cluster ,Universe' TU-München HADES Collaboration

Λ(1405)

J.C. Nacher et al., Phys. Lett. B455 (1999) 55-61

L

10th International Conference on Hypernuclear and Strange Particle Physics

Λ (1405) with HADES

p+p@3.5GeV

Missing Mass of (K⁺,p)

$$p + p \rightarrow \Lambda^{0}(1116) + K^{+} + p$$

$$p + p \rightarrow \Sigma^{0}(1193) + K^{+} + p$$

$$p + p \rightarrow \Sigma^{0}(1385) + K^{+} + p$$

$$p + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+} + p$$

$$K^{+} + p \rightarrow \Lambda^{0}(1405) + K^{+}$$

No Start-Detector Leading Particle Methode

 $\Delta p/p f^{\sim} 3\%$ $18^{\circ} < \theta < 85^{\circ}$ $f 2\pi \text{ in } \phi$

 $\begin{array}{l} \mbox{1.2} \cdot 10^9 \ \mbox{LVL1 Trigger Events} \\ \sigma_{\Lambda(1405)} \approx 10 \ \mbox{\mu b} \\ \sigma_{pp} \approx 42 \ \mbox{mb} \end{array}$

Decay Channel	p and K ⁺ in acceptance	4 particles in acceptance	Total Expected
	5.7%	0.9%	2500
$\Sigma^- + \pi^+$	5.7%	0.33%	450
$\sum^{+} + \pi^{-}$ $\rightarrow p + \pi^{0}$	6 %	1.2%	1600
$\Sigma^+ + \pi^-$	4.3%	0.12%	400
$\longrightarrow n + \pi^+$			

 $\Sigma^0 + \pi^0$

Hadron identification with HADES

Energy loss per distance travelled of swift charged particles traversing matter (dE/dx) $\beta = v / c$

$$-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I\cdot(1-\beta^2)}\right) - \beta^2\right]$$

- mean excitation potential of the target 1
- x distance travelled by the particle
- *n* electron density of the target

dE/dx and p are measured by the Detector

Decay channels of $\Lambda(1405)$ / $\Sigma(1385)^0$

Missing mass analysis

Event Generator **PLUTO** GEANT Digit strangeness content

Digitizer Analysis of simulated events with

Analysis of the Λ (1405)

Analysis of the Λ (1405)

-cut on $\Delta M(pK+) > 1100 \text{ MeV/c}^2$ -cut on $\Delta M(p_1, K^+, p_2, \pi^-) > 100 \text{ MeV/c}^2$

-cut on $\Delta M(pK+) > 1100 \text{ MeV/c}^2$ -cut on $\Delta M(p_1, K^+, p_2, \pi^-) > 100 \text{ MeV/c}^2$ - Λ (1116) track cuts

- cut on $\Delta M(p_1, K^+, p_2, \pi^-) > 200 \text{ MeV/c}^2$

- -cut on $\triangle M(pK+) > 1100 \text{ MeV/c}^2$ -cut on $\triangle M(p_1, K^+, p_2, \pi^-) > 100 \text{ MeV/c}^2$
- $-\Lambda$ (1116) track cuts
- cut on $\Delta M(p_1, K^+, p_2, \pi^-) > 200 \text{ MeV/c}^2$

ELMHOLTZ

Analysis of the Λ (1405)

mass seems to be quite broad \rightarrow needs to be investigated

Comparison with Full-Scale Simulation

Kinematic Refit

$$\Delta M^{2}(pp\pi^{+}\pi^{-}) - M^{2}(\pi^{0}) = 0$$

Decay channels of the $\Sigma(1385)^+$ resonance

 $\xrightarrow{\Sigma^{0}} + \pi^{+}$ $\xrightarrow{ \Lambda + \gamma}$ $\xrightarrow{ \Lambda + \gamma}$ $\xrightarrow{ \mu + \pi^{-}}$

- Background fitted via phase space
- Agreement with other measured data

fitted with modified Breit-Wiegner curve

Evaluation of the cross-section is in preparation Efficiency and Acceptance corrections missing

ELMHOLTZ

GEMEINSCHAFT

Take the FW into account

FW Momentum Resolution = 10% --> Kinematic Refit is necessary Systematic studies and calibration currently on-going

Channel	Σ ⁻ π+	Σ⁺π ⁻ ρπ⁰	Σ ⁺ π - 	Σ ⁰ π ⁰
HADES acceptance	2500	450	1600	400
HADES + FW	3500	1300	2000	900

HELMHOLTZ

10th International Conference on Hypernuclear and Strange Particle Physics

Take the FW into account

ELMHOLTZ GEMEINSCHAFT

Summary and Outlook

- The feasibility of the Measurement of $\Lambda(1405)$ with HADES has bee shown

• The Statistics collected in the Channel $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ is not sufficient to study the line shape in details but provides a reference for the other decays

• New High Quality Data for the $\Sigma(1385)$ + line shape

- Analysis employing a kinematic fit is going on, to study the line shape in the $\Sigma^{\pm}\pi^{\pm}$ channel

HELMHOLTZ

Hadron identification with HADES

Standard method for HADES

 $P = \mathbf{m} \cdot \boldsymbol{\beta} \cdot \boldsymbol{\gamma} \cdot \mathbf{c}$

TOF and path length $ightarrow \beta$

with β and $p \rightarrow m$

