K* photoproduction from the proton at CLAS

K. Hicks, W. Tang (Ohio Univ.) 10th Int. Hypernuclear Conference 15 September 2009

OUTLINE

- Review of K* photoproduction data
- Theoretical motivation
- Preliminary results

CLAS K*⁰Σ⁺ data (2007)

I. Hleiqawi et al., Phys. Rev. C 76 (2007) 039905E.

3

New K^{*0} Data from CB-ELSA

$K^0\pi^0\Sigma^+$ and $K^{*0}\Sigma^+$ photoproduction off the proton

M. Nanova¹, J. C. S. Bacelar², B. Bantes³, O. Bartholomy⁴, D. Bayadilov^{4,5}, R. Beck⁴, Y.A. Beloglazov⁵,

R. Castelijns^{2,a}, V. Crede⁶, H. Dutz³, A. Ehmanns⁴, D. Elsner³, K. Essig⁴, R. Ewald³, I. Fabry⁴, K. Fornet-Ponse³, M. Fuchs⁴, Ch. Funke⁴, R. Gothe^{3,b}, R. Gregor¹, A. B. Gridnev⁵, E. Gutz⁴, P. Hoffmeister⁴, I. Horn⁴, I. Jaegle⁷, J. Junkersfeld⁴, H. Kalinowsky⁴, S. Kammer³, V. Kleber³, Frank Klein³, Friedrich Klein³, E. Klempt⁴, M. Konrad³,

M. Kotulla¹, B. Krusche⁷, M. Lang⁴, J. Langheinrich^{3,b}, H. Löhner², I.V. Lopatin⁵, J. Lotz⁴, S. Lugert¹,
D. Menze³, J. G. Messchendorp², T. Mertens⁷, V. Metag¹, C. Morales³, D.V. Novinski⁵, R. Novotny¹, M. Ostrick^{3,c},
L. M. Pant^{1,d}, H. van Pee⁴, M. Pfeiffer¹, A. Radkov⁵, A. Roy^{1,e}, S. Schadmand^{1,a}, Ch. Schmidt⁴, H. Schmieden³,
B. Schoch³, S. V. Shende², V. Sokhoyan⁴, A. Süle³, V. V. Sumachev⁵, T. Szczepanek⁴, U. Thoma^{1,4}, D. Trnka¹,

R. Varma^{1,e}, D. Walther^{3,4}, Ch. Weinheimer^{4,f}, and Ch. Wendel⁴

(The CBELSA/TAPS Collaboration)

Comparison: CLAS, CB-ELSA

Red (open) = CLAS, Black (solid) = TAPS

Note the strong forward-peaking of TAPS data at higher photon energies.

Y. Oh and H. Kim, hep-ph/0605105.

Theory calculations: $K^{*0}\Sigma^{+}$

Model I (blue): no kappa form factor; Model II (red): with kappa form factor.

K. Hicks (Ohio)

Hyp-X Conf.

Y. Oh and H. Kim, PRC 73:065202 (2006).

Hyp-X Conf.

Y. Oh and H. Kim, hep-ph/0605105.

Theory: a) $K^{*+}\Lambda$, b) $K^{*0}\Sigma^{+}$

SOLID BLUE: no kappa form factor; DASHED RED: with kappa form factor

K. Hicks (Ohio)

Hyp-X Conf.

K*+ Photoproduction

- Using CLAS g11 data set
- Detecting: $\pi^+\pi^-$ pair and another π^+ .
- Missing mass of Lambda and Sigma
- Preliminary acceptance using GSIM
- Absolute normalization
 - Checked using $K^0\Sigma^+$ photoproduction.

K⁰ mass peak

K. Hicks (Ohio)

10

Sample fit: one E_v bin

2009/03/08 10.44

Calibration: $\gamma p \rightarrow K^0 \Sigma^+$ reaction

- Same K⁰ identification in final state
- Same photon flux, target, etc.
- Similar simulation calc. (minus one pion)
- Other data exist
 - CLAS (unpub.) B. Carnahan PhD (2003).
 - SAPHIR: R. Lawall et al., Eur. Phys. J. (2005).

Sarantsev et al., Eur. Phys. J. A25, 411 (2005).

Hyp-X Conf.

K*+Λ Normalized Yields

K. Hicks (Ohio)

Hyp-X Conf.

Summary

- $K^{*+}\Lambda$ cross sections are nearly final.
 - Normalizations appear to be understood.
 - Good agreement with most of the SAPHIR data for $K^0\Sigma^+$, but higher precision.
 - For K^{*+}, we will also do Λ polarization.
- In addition to the K*+ we plan to redo K*0 cross sections with higher precision.
 - Together, these data can be used to test theoretical models including a kappa meson.

K*+Λ (CLAS preliminary)

L. Guo and D. Weygand, N* 2005 Conf., hep-ex/060101.

K*+ Λ shown by the RED points, quoted with 20% uncertainty.K. Hicks (Ohio)Hyp-X Conf.

Details on data and cuts

- Runs 43526 44107 used (E=4.02 GeV).
- Bad paddles were removed.
- Photon identified using 1.0 ns time cuts.
- Particle ID from SC and tagger time cuts.
- Standard fiducial and vertex cuts applied.
- Sideband subtraction to isolate K⁰ events.
- K*+ mass cut from 0.80-0.98 GeV.