Photoproduction of A Hypernuclei in the Quark-Meson Coupling (QMC) model

Hyp-X, "RICOTTI", Tokai, Japan, Sep. 14 – 18, 2009

K. Tsushima (JLab) R. Shyam, A.W. Thomas PLB, 676, 51 (2009) NPA 814, 66 (2008), arXiv:0903.5478 [nucl-th] K. Saito, KT, A.W. Thomas, PPNP, 58, 1 (2007)

Outline

- Introduction, motivation
- QMC model, finite nuclei
- Hypernuclei in the latest QMC model (Σ,Λ,Ξ): no heavy
 Σ hypernuclei as in experiments
- Photoproduction of Λ hypernuclei
- Summary (Discussions)

Introduction, motivation

- (Heavy) nuclei in terms of quarks and gluons (or QCD) ???!!!
- NN,NNN,NNNN,NNNNN..... interactions
 ⇒ Nucleus ? ⇐ shell model, MF model,density functional theory...BUT ?
- Lattice QCD: still extracting NN and NY
- **2-body** interactions, [Y=hyperons: Λ, Σ, Ξ]
- Hypernucleus ? (Nucleus+Y) bound states
- Quark model based description of nucleus

Hypernuclei: SU(3) so bad ?

A hypernuclei: well established Expts. up to **Pb** core nucleus, many states Σ^+ hypernuclei: only ${}_{\Sigma}^4$ He confirmed \implies Probably **no** other **heavy** Σ hypernuclei E hypernuclei: hints – not confirmed ⇒ **Planned Expts.:** (JLab?), J-PARC, **GSI-FAIR**

The QMC model P. Guichon, PLB 200, 235 (1988)

(For a review, PPNP 58, 1 (2007)) Light (u,d) quarks interact Nuclear Binding !! self-consistently with mean σ and ω fields < **o** > $m^*q=mq - g_\sigma^q \sigma = mq - V_\sigma^q$ $< \omega$ \Downarrow nonlinear in σ $M^*N \cong MN - g_{\sigma}^N \sigma + (d/2)(g_{\sigma}^N \sigma)^2$ $M*_N = M_N - V_\sigma^N$ $-\left(m_{\sigma}-V_{\sigma}^{q}\right)+\gamma_{0}V_{\omega}^{q}\right]q=0$ $V\omega = 3V\omega$ $[i \partial \cdot \gamma - M_N^* + \gamma_0 V_U^N] N = 0$ **Self-consistent !**

At Nucleon Level Response to the Applied Scalar Field is the Scalar Polarizability

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

$$M^{*}(\vec{R}) = M - g_{\sigma}\sigma(\vec{R}) + \frac{d}{2} \left(g_{\sigma}\sigma(\vec{R})\right)^{2}$$

Non-linear dependence: scalar polarizability (d)** $\frac{1}{4}$ = 0.22 R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.

Operated by Jefferson Science Association for the U.S. Department of Energy

ellerson C

Nuclear (Neutron) matter, E/A

New saturation mechanism ! Incompressibility (~ spring constant)

<u>K ≈ 280 MeV</u> (200 ~ 300 MeV)

PLB 429, 239 (1998)

Finite nuclei: ²⁰⁸ Pb energy levels

²⁰⁸Pb single particle energies NPA 609, 339 (1996) 11/2 -102d_{5/2} 1h_{9/2} $1g_{\gamma}$ 3p/2 Heavy mass nuclei 1g_{9/2} 3s2d_{5/2} -201g_{7/2} 1g_{9/2} energy (MeV) Based on guarks ! 2s -30 $1p_{1/3}$ $1p_{3/2}$ 1d_5/2 -40151/2 Hypernuclei $1p_{1/2}$ 1 p_{3/2} -50 1s. protons neutrons (the latest version of QMC) Exp.QMCHQMCExp.QMCH

QMC

 $2f_{5/2}$

h_{11/2}

$QMC \iff QHD$

- QHD shows importance of relativity : mean σ , ω and ρ fields
- **QMC** goes **far beyond QHD** by incorporating effect of hadron *internal structure*
- Minimal model couples these mesons to *quarks* in relativistic quark model e.g. MIT bag, or confining NJL
- $g_{\sigma}^{\ q}$, $g_{\omega}^{\ q}$, $g_{\rho}^{\ q}$ fitted to ρ_0 , E/A and symmetry energy
- <u>No additional parameters</u> : predict change of structure and binding in nuclear matter of **all hadrons**: e.g. ω , ρ , η , J/ψ , N, Λ , Σ , $\Xi \implies$ see next !

SU(3) (light quark # !)

Λ and $\Sigma \Leftrightarrow$ Self-consistent <u>OGE</u> <u>color hyperfine</u> interaction

- Λ and Σ hypernuclei are more or less similar (channel couplings) \Leftrightarrow improve !
- Ξ potential: weaker (~1/2) of Λ and Σ (Light quark #, or SU(3))
- Very small spin-orbit splittings for
 Λ hypernuclei ↔ SU(6) quark model

Bag mass and color mag. HF int. contribution (OGE)

T. DeGrand et al., PRD 12, 2060 (1975) $M = [Nq\Omega q + Ns\Omega s]/R - Z0/R + 4\pi BR^3/3$ + $(Fs)^{n} \Delta EM(f)$ (f=N, Δ , Σ , Λ , Ξ ...) $\Delta E_{M} = -3 \alpha_{c} \sum_{i} \lambda_{i} \lambda_{i} \overrightarrow{\sigma}_{i} \cdot \overrightarrow{\sigma}_{j} M(m_{i}, m_{j}, R)$ $\Delta E_{M}(\Lambda) = -\frac{3\alpha}{\alpha} M(m_{q}, m_{q}, R), \quad (q=u,d)$ $\Delta E_M(\Sigma) = \alpha_c M(m_q, m_q, R)$ -4α M(mq, ms, R)

Latest QMC: Includes Medium Modification of Color Hyperfine Interaction

N - Δ and Σ - Λ splitting arise from **one-gluon-exchange** in MIT Bag Model : as " σ " so does this splitting...

Operated by Jefferson Science Association for the U.S. Department of Energy

HF couplings for hyperons ⇔ successful for high density neutron star (NPA 792, 341 (2007))

Hypernuclei spectra 2

NPA 814, 66 (2008)

	$89_{\Lambda} Yb_{Exp.}$	$^{91}_{\Lambda}$ Zr	<u>9</u> 1Zr	208 Pb x Pb Exp.	209Pb 2	2 <u>0</u> 9Pb
1s 1/2	-23.1	-24.0	-9.9	-26.3	-26.9	-15.0
1p3/2		-19.4	-7.0		-24.0	-12.6
1p1/2	-16.5	-19.4	-7.2	-21.9	-24.0	-12.7
1d5/2	-9.1	-13.4	-3.1	-16.8	-20.1	-9.6
2s _{1/2}		-9.1	_		-17.1	-8.2
1 d _{3/2}	(-9.1)	-13.4	-3.4	(-16.8)	-20.1	-9.8

Summary: hypernuclei

- The latest version of QMC (OGE color hyperfine interaction included selfconsistently in matter) ⇒
- ↑ A single-particle energy 1s1/2 in Pb is -26.9 MeV (Exp. -26.3 MeV) ← no extra parameter!
- * Small spin-orbit splittings for the Λ
- No Σ nuclear bound state !!
- Is expected to form nuclear bound state

Photoproduction of A hypernuclei R. Shyam, KT, A.W. Thomas, PLB 676, 51 (2009)

A and K⁺ are produced via s-channel N* excitation (dominant) S11(1650), P11(1710) P13(1720) ↓
Energy region of interests, hypernuclei production

(~ 10 % ambiguity due to the other background \Rightarrow)

Elementary $\gamma p \longrightarrow K^+ \Lambda$ reaction

K. Tsushima

Summary: A hypernuclei photoproduction

- 1. First attempt to study photoproduction of Λ hypernuclei $\binom{12}{C(\gamma, K^+)} \stackrel{+12}{\Lambda} B$ reaction) via quark-based model (QMC)
- 2. $d\sigma/d\Omega$ at Kaon angle θ = 10° shows distinguishable difference!
- 3. Back ground inclusion (higher energies)
- 4. Heavier Λ hypernuclei

Discussions

1. Study of Ξ hypernuclei \Rightarrow A(K⁻,K⁺) \equiv B reaction **2.** Elementary $\mathbf{K}^{-}\mathbf{p} \longrightarrow \Xi \mathbf{K}^{+}$ reaction 3. Heavier A hypernuclei photoproduction 4. Electroproduction of A hypernuclei 5. Ac hypernuclei ???!!!

Bound quark Dirac spinor (1s_{1/2})

Quark Dirac spinor in a bound hadron: $q_{1s}(\mathbf{r}) = \begin{pmatrix} U(\mathbf{r}) \\ \cdot \\ i\sigma \cdot \mathbf{r} L(\mathbf{r}) \end{pmatrix} \chi$

Lower component is enhanced !

- \implies **g**_A* < **g**_A: ~ |U|**2 (1/3) |L|**2,
- \implies **Decrease** of scalar density \implies

Decrease in Scalar Density

Scalar density (quark): ~ |U|2 - |L|**2**,

M_N*, N wave function, Nuclear scalar density etc., are self-consistently modified due to the N internal structure change !

→ Novel Saturation mechanism !

 \downarrow

Hypernuclei spectra 1

NPA 814, 66 (2008)

	$^{16}_{\Lambda} \underset{Exp.}{O}$	$^{17}_{\Lambda}\mathrm{O}$	$^{17}_{\Xi^0}O$	$^{40}_{\Lambda}$ Ca Exp.	$^{41}_{\Lambda}$ Ca	$^{41}_{\Xi^0}$ Ca	$^{49}_{\Lambda}$ Ca	${}^{49}_{\Xi^0}\mathrm{Ca}$
1s 1/2	-12.4	-16.2	-5.3	-18.7	-20.6	-5.5	-21.9	-9.4
1p3/2		-6.4			-13.9	-1.6	- <u>15.4</u>	-5.3
1p1/2	-1.85	-6.4			- <u>13.9</u>	-1.9	-15.4	-5.6
1d5/2					-5.5		-7.4	
2s1/2					-1.0		-3.1	
1d3/2					-5.5		-7.3	

$^{12}_{\Lambda}$ B hypernucleus (MeV)

State	Exp.	QMC	Vv	Vs
			(W.S)	(W.S)
${}^{12}_{\Lambda}B1s_{1/2}$	11.37	14.93	171.78	-212.69
$\Lambda^{12} B_{1p_{3/2}}$	1.73	3.62	204.16	-252.28
${}^{12}_{\Lambda}B_{1p_{1/2}}$	1.13	3.62	227.83	-280.86
$(p_{1}p_{3/2}) -1$	15.96	(≅OK)	382.60	-472.34
	Sep. energy			

 Hence need effective
 Σ-N and Λ-N forces in this density region!

•Hypernuclear data is important input (J-PARC, FAIR, JLab)

 $\rho_i\,/\,\rho_B$

U.S. DEPARTMENT OF ENERGY

Operated by Jefferson Science Association for the U.S. Department of Energy

Consequences for Neutron Star

New QMC model, fully relativistic, Hartree-Fock treatment

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy