10th International Conference on Hypernuclear and Strange Particle Physics "Hyp X" (Sept. 14– 18, 2009 "RICOTTI" in Tokai, Ibaraki, Japan)

Hyperon-nucleus folding potentials in the complex G-matrix approach

Takenori FURUMOTO (Osaka City Univ. & RIKEN)

Collaborators Y. Sakuragi (Osaka City Univ.) Y. Yamamoto (Tsuru Univ.)

Contents

1. Extended Soft Core (ESC) model

- core is designed by pomeron and ω -meson
- ESC04 and ESC08

2. hyperon-nucleus optical potential

- through the single-folding model approach
- apply to ∑-nucleus elastic scattering
- apply to the **<u>quasi free Σ production</u>**

ESC model (Σ-N interaction)

ESCO4 model → ESCO8 model

Quark Pauli-forbidden state

- ESC08 model
 - Assuming "equal parts" of ESC and QM are similar to each other
- adjust ${}^{3}S_{1}$ state by changing the pomeron strengths for the corresponding channels $g_{P} \longrightarrow sqrt(2.5) g_{P}$

Table 1: Values of U_{Σ} at normal density and partial wave contributions for ESC08.

	U_{Σ}	D	${}^{3}P_{2}$	${}^{3}P_{1}$	${}^{3}P_{0}$	$^{1}P_{1}$	${}^{3}S_{1}$	$^{1}S_{0}$	T	model
		-0.8	-1.3	-6.9	2.0	2.6	-27.6	9.7	1/2	ESC08
	+14.8	-0.1	-0.6	6.8	-2.0	-11.8	53.7	-9.1	3/2	
repulsive		-0.8	-2.2	-6.5	2.6	2.3	-31.0	10.9	1/2	ESC04a
	-42.9	-0.2	-5.3	5.8	-2.3	-6.9	2.2	-11.7	3/2	
		-0.5	0.5	-4.6	2.5	2.1	-8.3	14.9	1/2	NSC97f
	-12.9	-0.1	-2.8	6.0	-2.1	-4.1	-4.1	-12.4	3/2	

Σ^{0} + ²⁸Si folding potential (central part)

Σ⁰ + ²⁸Si folding potential (control part) (due to Quark Pauli-forbidden state)

 Σ^{0} + ²⁸Si elastic scattering

$$U_{\rm opt} = V + i N_{\rm W} W$$

 $N_{\rm W} = 0.6$

$$\frac{d^2\sigma}{dE_K d\Omega_K} = \frac{1}{\pi} \left(\frac{d\sigma}{d\Omega} \right)_{\pi N \to \overline{K\Sigma}} S(E)$$

strength function
-includes the information
 of ∑ optical potential

Summary

We have constructed <u>SA optical potential</u> though <u>complex G-matrix folding model approach</u>

<u>Elastic scattering</u> (cross section & analyzing power)

- is demonstrated by folding potential with ESC04 & ESC08

Strength function S(E)

- is calculated by folding potentials with ESC04 & ESC08
- compare <u>folding potentials</u> with <u>phenomenological potential</u>
 ⇒ ESC08 is apparently better than ESC04

Future

- 1. complete the quasi-free (π^{-} , K⁺) calculation
- 2. the problem of imaginary part (overestimation)

Σ^{0} + ²⁸Si folding potential (LS part)

TABLE XXII: Values of U_{Σ} at normal density and partial wave contributions for ESC04a-d and NSC97f (in MeV).

		Т	${}^{1}S_{0}$	${}^{3}S_{1} {}^{-1}P_{1}$	$^{3}P_{0}$ 3	$P_1 {}^3P_2$	D	U_{Σ}
	ESC04a	1/2	11.6 -	-26.9 2.4	2.7 -	6.4 -2.0	-0 .8	
		3/2	-11.3	2.6 - 6.8	-2.3	5.9 -5.1	-0.2	-36.5
various	$\mathrm{ESC04b}$	1/2	9.6 -	-25.3 1.8	3 1.6 -	5.4 -2.1	-0.7	
Nijmegen		3/2	-9.6	9.9 –5.5	-1.9	5.4 -4.6	-0.2	-27.1
Models	$\mathrm{ESC04c}$	1/2	6.4 -	-20.6 2.4	2.9 -	6.7 - 1.6	-0 .9	
		3/2	-10.7	6.9 -8.8	-2.6	6.0 -5.8	-0 .2	-33.2
attractive	$\mathrm{ESC04d}$	1/2	6.5 -	-21.0 2.6	52.4 -	6.7 - 1.7	-0 .9	
		3/2	-10.1	14.0 - 8.5	-2.6	5.9 -5.7	-0.2	-26.0
	NSC97f	1/2	14.9	-8.3 2.1	2.5 -	4.6 0.5	-0. 5	
		3/2	-12.4	-4.1 -4.1	-2.1	6.0 - 2.8	-0.1	-12.9
repulsive		21 S	23 S	⁴¹ S	43 S	sum		
QM-based	Fss	6 .1	-20.2	-8.8	48.2	+9.8		
models	fss2	6.7	-23.9	-9.2	41.2	+7.5		

ESCO4 model → ESCO8 model

- Quark model
 - quark Pauli-forbidden state have an effect on ³S₁
- ESC08 model
 - Assuming "equal parts" of ESC and QM are similar to each other
- adjust ${}^{3}S_{1}$ state by changing the pomeron strengths for the corresponding channels $g_{P} \longrightarrow sqrt(2.5) g_{P}$

Nijmegen soft-core models (NSC89/97. ESC04/07)

Tamagaki's Quark Pauli-forbidden states ?

ハイパー核で領域Ⅲを見れるか? 原子核現象を通じて核力の領域IIIの異なる modelingを区別することはできなかった

Σ -Nucleus potentials U_{Σ}

Intermediate states in (π,K) reactions

Σ-nucleus scattering

• • • • •

Interesting problems repulsive ? isospin-dependence spin-orbit interaction imaginary parts (scattering & conversion)

TABLE XXII: Values of U_{Σ} at normal density and partial wave contributions for ESC04a-d and NSC97f (in MeV).

		Т	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
	ESC04a	1/2	11.6 -	-26.9	2.4	2.7	-6.4	-2.0	-0.8	
		3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5
	$\mathrm{ESC04b}$	1/2	9.6 -	-25.3	1.8	1.6	-5.4	-2.1	-0.7	
various		3/2	-9.6	9.9	-5.5	-1.9	5.4	-4.6	-0.2	-27.1
Nijmegen	$\mathrm{ESC04c}$	1/2	6.4 -	-20.6	2.4	2.9	-6.7	-1.6	-0.9	
Models		3/2	-10.7	6.9	-8.8	-2.6	6.0	-5.8	-0.2	-33.2
	$\mathrm{ESC04d}$	1/2	6.5 -	-21.0	2.6	2.4	-6.7	-1.7	-0.9	
		3/2	-10.1	14.0	-8.5	-2.6	5.9	-5.7	-0.2	-26.0
	NSC97f	1/2	14.9	-8.3	2.1	2.5	-4.6	0.5	-0.5	
		3/2	-12.4	-4.1	-4.1	-2.1	6.0	-2.8	-0.1	-12.9
		21 S	23 S	41 <u>9</u>	s. [43 S		um		
QM-based	Fss	6 .1	-20.2	-8	5.8	48.2	4	-9.8		

fss2 6.7 -23.9 -9.2 41.2

+7.5

models

Feature of QM core

K. Shimizu, S. Takeuchi and A.J. Buchmann, PTP, Suppl. 137 (2000)

BB(TS)	N	$V_{mag}(R=0)$ [MeV]	r_c [fm]
NN(01)	$\frac{10}{9}$	340.7	0.38
NN(10)	$\frac{10}{9}$	438.0	0.52
$N\Lambda(\frac{1}{2}0)$	1	379.9	0.57
$N\Sigma(\frac{1}{2}0)$	$\frac{1}{9}$	302.4	0.91
$N\Lambda(\frac{1}{2}1)$	1	262.7	0.46
$N\Sigma(\frac{1}{2}1)/$	1	213.9	0.37
$N\Sigma(\frac{3}{2}0)$	$\frac{10}{9}$	389.6	0.50
$N\Sigma(\frac{3}{2}1)$	$-\frac{2}{9}$	343.9	0.94

Almost Pauli-forbidden states

	$SU(6)_{fs}$	$SU(6)_{fs}$ -contents of the various potentials on the isospin, spin basis.								
		(S, I)	$V = aV_{[51]} + bV_{[33]}$							
	$NN \rightarrow NN$	(0, 1)	$V_{NN}(I=1) = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$							
	$NN \rightarrow NN$	(1, 0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$							
	$\Lambda N \to \Lambda N$	(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$							
	$\Lambda N \to \Lambda N$	(1, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$							
	$\Sigma N \to \Sigma N$	(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$							
Adjust V	$\Sigma N \to \Sigma N$	(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$							
	$\Sigma N \to \Sigma N$	(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$							
	$\Sigma N \to \Sigma N$	(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$							

Pauli-forbidden state exist in V_[51]

Recent Nijmegen approach

ESC core = pomeron + ω

Assuming "equal parts" of ESC and QM are similar to each other

Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels

g_P >>> sqrt(2.5) g_P

model	Т	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}	Γ_{Σ}
NSC97f	1/2	14.9	-9.6	1.9	2.3	-4.0	0.4	-0.4		
	3/2	-12.2	-4.2	-3.8	-1.8	5.5	-2.7	-0.2	-13.9	16.0
ESC04a	1/2	11.6	-29.6	2.4	2.7	-6.3	-2.1	-0.8		
	3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-39.2	9.8
ESC04d	1/2	6.7	-22.7	2.6	2.5	-6.7	-1.9	-0.9		
	3/2	-10.1	14.1	-8.5	-2.6	5.8	-5.7	-0.2	-27.5	11.1
ESC07-1	1/2	12.1	-13.6	3.0	0.5	-1.8	-0.2	0.0		
	3/2	-16.6	43.9	-11.7	0.6	4.4	0.1	0.2	+21.0	5.7
ESC07-2	1/2	9.7	-15.1	2.8	0.5	-1.8	-0.3	0.0		
	3/2	-16.3	35.8	-12.9	0.5	4.2	-0.7	0.2	+6.8	6.3

Optical potential

Σ-nucleus folding potential derived from complex G-matrix

$G_{\Sigma N}$ (r: E, k_F)

In N-nucleus scattering problem physical observables can be reproduced with "no free parameter"

Effective Mass and E-dependence of U_{Σ} relation

Improved LDA by JLM

Phys. Rev. C10 (1974) 1391

$$\begin{split} U(\rho,E) &= \sum_{ij} a_{ij} \, \rho^i \, E^{j-1} \\ U(r;E) &= (t \sqrt{\pi})^{-3} \int U(\rho(r'),E) \, \exp(-|\mathbf{r}-\mathbf{r}'|^2/t^2) d\mathbf{r}' \end{split}$$

simple LDA : $U(\rho(r),E)$

by Maekawa, at al.

Fig. 2. Differential cross section of (π^-, K^+) reaction on ²⁸Si target at the incident momentum of $p_{\pi}=1.2 \text{ GeV}/c$. The solid line shows result of Batty's DD potential with LOFAt + DWIA, Other line are calculated results with LOFAt + DWIA with potential depth of $V_0=-50, -30, -10, 0, +10, +90 \text{ MeV}(\text{up to down})$, respectively. Imaginary part is fixed to be -20 MeV.

In general, G-matrix overestimates U_{imag} as seen in N-nucleus systems