Spin dependence of ΞN interaction and Ξ hypernuclear production spectrum

H. Matsumiya (Toshiba Co.) Poster Session T13
M. Isaka (Hokkaido Univ.) Poster Session T19
M. Kimura (Hokkaido Univ.)
A. Dote (KEK)
A. Ohnishi (YITP)

Introduction

Development of the hypernuclear study opens new era.

Our Interest

- Ξ hypernuclear state and production spectrum (J-PARC, E05)
 Doorway to S=-2 sector, bound or unboud ?, ΞN interaction
 - What the production spectrum will be ?
 - Is it possible to extract the infromation of EN interaction from the observable ?
- Impurity effect by Λ particle in p-sd shell hypernuclei
 Increasing knowledge for ΛN interaction
 Spectroscopy of sd shell hypernuclei wll be available
 - Coexistence of the cluster and shell structure in sd shell nuclei
 - How does the Λ particle affect and change the nuclear structure ?

Theoretical model for spectroscopy of p-sd-(pf) shell hypernuclei

- Shell model
- Cluster model
- Antisymmetrized Molecular Dynamics

Application of AMD to ordinary nuclei

Stable nucleus

Unstable nucleus

EXP

AMD

Theoretical Framework of ccAMD

An extention of AMD for the system with (multi) strangeness

Trial Wave Function

- Parity projected wave function
- Superposition for each baryon channel under consideration
- Gaussian form of each single particle wave packets

$$\begin{split} |\Psi^{\pm}\rangle &= \frac{1 \pm \mathcal{P}}{2} |\Psi\rangle, \quad |\Psi\rangle = \sum_{a} x_{a} |\Phi^{a}\rangle, \quad |\Phi^{a}\rangle = \frac{1}{\sqrt{A!}} \det\left[|\varphi_{i}^{a}(j)\rangle\right], \\ |\varphi_{i}^{a}\rangle &= |\phi_{i}^{a}\rangle \otimes |\sigma_{i}^{a}\rangle \otimes |f_{i}^{a}\rangle \\ \langle r|\phi_{i}^{a}\rangle &= \left(\frac{2\nu}{\pi}\right)^{3/4} \exp\left[-\nu\left(r - \frac{\boldsymbol{z}_{i}^{a}}{\sqrt{\nu}}\right)^{2} + \frac{\boldsymbol{z}_{i}^{a2}}{2}\right] \end{split}$$

Hamiltonian

- Effective interaction for low-momentum model space
- NN: Volkov, Gogny, ...
- YN: G-Matrix interaction ESC04D, NHC-D, Ehime, etc..

$$\hat{H} = \sum_{i} \hat{t}_{i} - \hat{T}_{\rm CM} + \frac{1}{2} \sum_{i \neq j} \hat{v}_{ij}^{NN} + \frac{1}{2} \sum_{i \neq j} \hat{v}_{ij}^{YN} + \Delta M,$$

Theoretical Framework of ccAMD

 $\frac{\mathrm{d}x_a}{\mathrm{d}t} = -\left(\lambda + i\mu\right) \frac{1}{\hbar} \frac{\partial \tilde{\mathcal{H}}^{\pm}}{\partial x_a^*}, \qquad \frac{\mathrm{d}u_i^a}{\mathrm{d}t} = -\left(\lambda + i\mu\right) \frac{1}{\hbar} \left[\frac{\partial \tilde{\mathcal{H}}^{\pm}}{\partial u_i^{a*}} + \sum_k \eta_k^a \frac{\partial \mathcal{W}_k^a}{\partial u_i^{a*}} \right],$

Procedure of the calculation

Variational Calculation

- Optimization of variational parameters
- Imaginary time development method

Angular Momentum Projection

$$|\Phi_{K}^{s}; J^{\pm}M\rangle = \frac{8\pi^{2}}{2J+1} \int d\Omega \ \mathcal{D}_{MK}^{J}^{*}(\Omega) \ \hat{R}(\Omega) \ \frac{1\pm\hat{\mathcal{P}}}{2} |\Phi^{s}\rangle$$

Generator Coordinate Method (GCM)

- Superposition of the w.f. with different configurations
- Diagonalization of Hamiltonian

$$\begin{pmatrix} \mathcal{N}_{sK,s'K'}^{J^{\pm}} \\ \mathcal{H}_{sK,s'K'}^{J^{\pm}} \end{pmatrix} = \left\langle \Phi_{K}^{s}; J^{\pm}M \middle| \begin{cases} 1 \\ \hat{H} \end{cases} \right\} \middle| \Phi_{K'}^{s'}; J^{\pm}M \right\rangle. \qquad \left| \Psi_{\mathrm{Hyp.}}^{J^{\pm}M} \right\rangle = \sum_{sK} g_{sK} \left| \Phi_{K}^{s}; J^{\pm}M \right\rangle.$$

/ •

${}^{12}_{\Lambda}$ C: Level Scheme

- ¹¹C(g.s.) x $s_{1/2}$ dominates ground state doublet
- Many core excited states appear (further detailed study is needed)

¹² C: (π^+, K^+) spectrum

• Peak from the core excited states appears between s_{Λ} and p_{Λ}

^{12}EBe

Level scheme, Production spectrum and their dependence on YN int.

H. Matsumiya (T13, Today)

Introduction

Motivation

Ξ hypernuclear state and production spectrum (J-PARC, E05) Doorway to S=-2 sector, bound or unboud ?, Ξ N interaction

- What the production spectrum will be ?
- Is it possible to extract the ΞN interaction from the observable ?

Method

- Coupled channel AMD calculation

 (¹¹B x Ξ- and ¹¹Be x Ξ⁰ channels)
- EN interaction: G-Matrix Int. derived from Ehime, NHC-D and ESC04d

ESC04d: Th. A. Rijken and Y. Yamamoto, arXiv:nucl-th/0608074. Ehime: Y. Yamaguchi *et al.*, PTP 105 (2001), 627. G-matrix: Y. Yamamoto, private communication

• PWIA approx for production spectrum T. Harada and S. Hirenzaki, (KEK summer school 2006)

¹²_ΞBe: Level Scheme

- The order of the ground state doublet depends on the effective int. ESC04d (Strong attraction for spin triplet) NHC-D(repulsion for spin-triplet)
- Small mixing between Ξ^{-} and Ξ^{0} channels
- An almost pure configuration $({}^{11}B(g.s.)x\Xi^{-}$ in the g.s. doublet

Density distribution of the g.s.

- ⁷Li + α cluster-like structure of ¹¹B
- $0s_{1/2}$ nature of the Ξ single particle wave function
- Small reduction of the inter-cluster distance in ${}^{12}_{\Xi}$ Be

$^{12}C(K^-,K^+)^{12}_{\Xi}Be spectrum$

- Spin non flip
- –––– Spin flip
- Very large conversion width of ESC04d
- Peak position and height of spin flip, non flip cross section are sensitive to spinspin interaction

Impurity effect of Λ particle in sd-shell nuclei

M. Isaka (T19, Today)

Predicted parity inversion in ${}^{20}_{\Lambda}$ Ne

T. Sakuda and H. Bandō, Prog. Theor. Phys. 78 (1987), 1317.

- Two different kinds of structure coexist in ¹⁹Ne
- Cluster state becomes the ground state of ²⁰_ΛNe, due to the large shrinkage effect parity inversion

Results and Discussion (²⁰ ΛNe) Binding energy of Λ in its s orbital

 AMD with YNG[1]
 Calc. (Sakuda et al.) [2]

 [1] Y. Yamamoto, et. Al.,, Prog. Theor. Phys. Suppl. 117 (1994), 361.

 [2] T. Sakuda and H. Bandō, Prog. Theor. Phys. 78 (1987), 1317.

Results and Discussion ($^{20}_{\Lambda}$ Ne)

• Binding energy of Λ in its p orbital

AMD with YNG[1]

[1] Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda and S. Nagata, Prog. Theor. Phys. Suppl. 117 (1994), 361.

Summary

- 1. We have extended Antisymmetrized Molecular Dynamics to the multi strangeness system.
- 2. Application to ${}^{12}_{\Xi}Be$
 - The order of the ground state doublet strongly depends on the spin-spin interaction of EN interaction
 - Large conversion width in ESC04d interaction
 - Production spectrum (Peak position and hight) strongly depends on the EN interaction

possibility to determine the sign of spin-spin int.

- 3. Application to ${}^{20}_{\Lambda}$ Ne
 - Parity inversion does not occur.
 Contradicting result to the cluster model calculation.
 Shrinkage effect is not so large.
 - A particle in p-shell causes the parity inversion in the excited state of ${}^{20}_{\Lambda}$ Ne