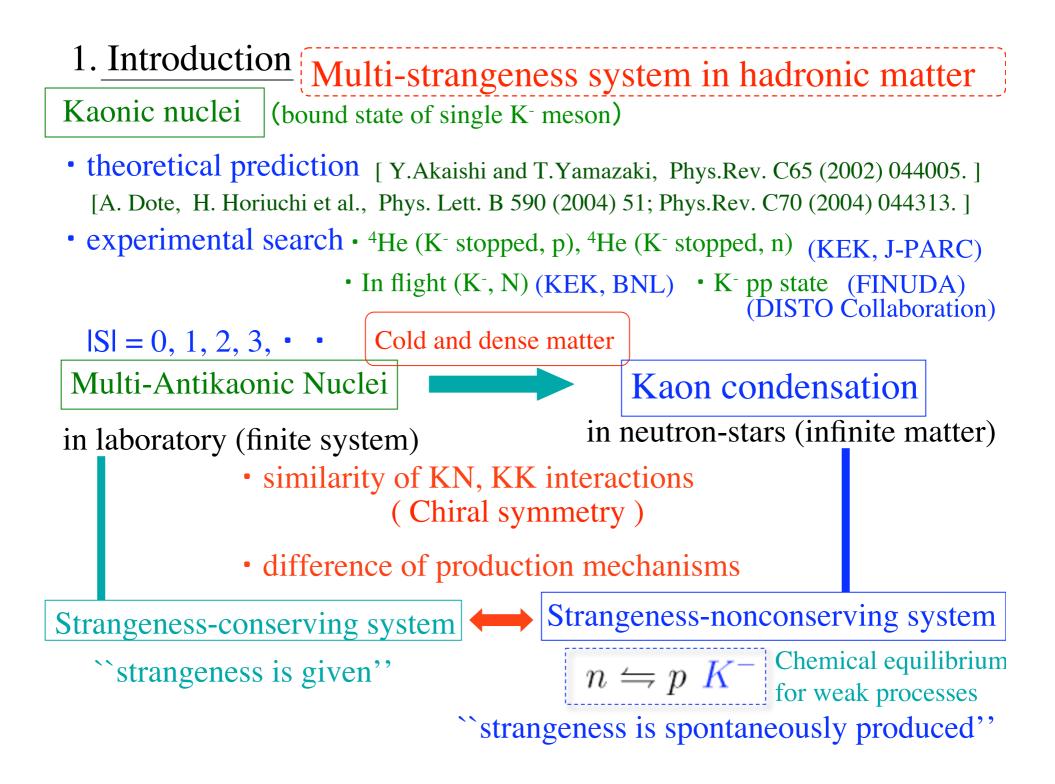
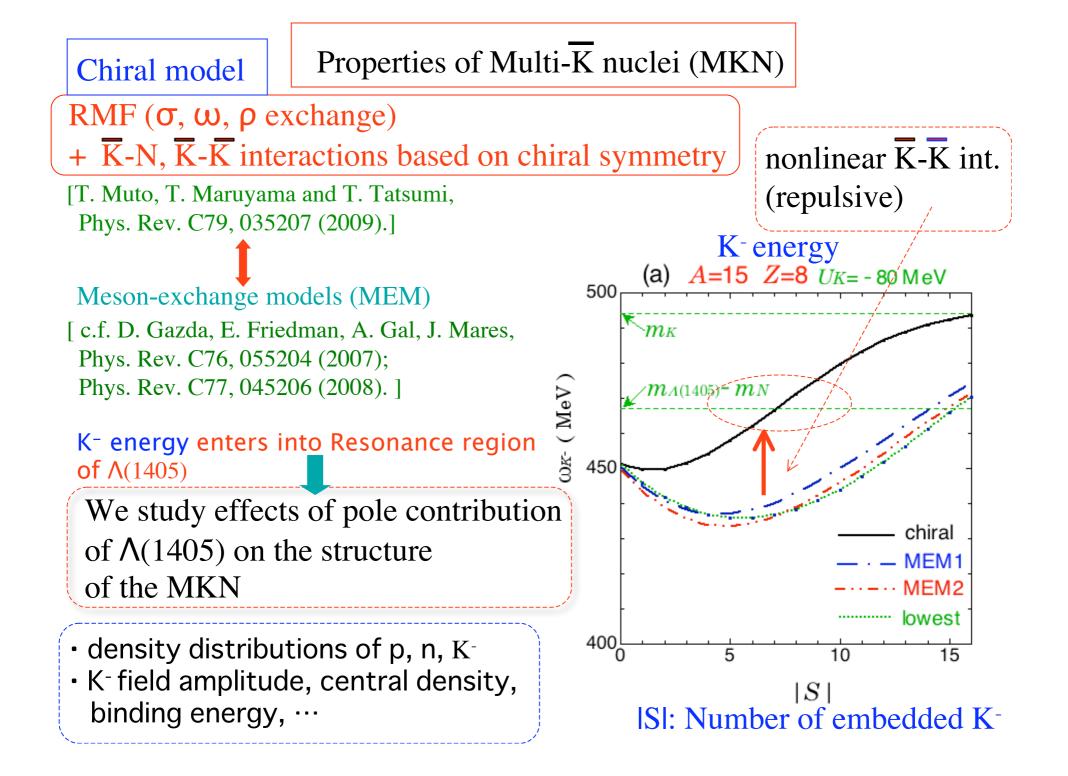
The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X) (RICOTTI, Tokai, Ibaraki, Japan, September 14 - 18, 2009)

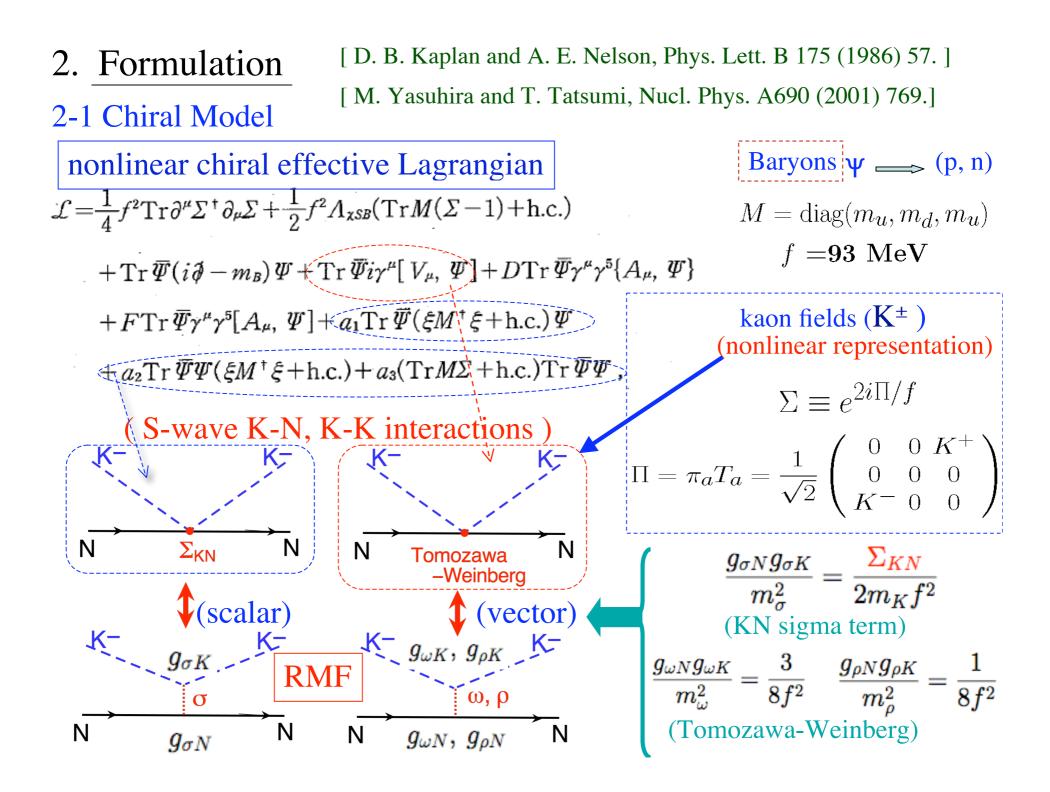
Effects of $\Lambda(1405)$ on the Structure of Multi-Antikaonic Nuclei

Takumi Muto(Chiba IToshiki Maruyama(JAEA)Toshitaka Tatsumi(Kyoto U

(Chiba Institute of Technology)(JAEA)(Kyoto University)







2.2 Effects of Range terms and $\Lambda(1405)$

[H. Fujii, T. Maruyama, T. Muto, T.Tatsumi, (Second-order effects, SOE) Nucl. Phys. A 597 (1996), 645. Correction to thermodynamic potential

axial current of hadrons :
$$A_5^{\mu} = f \partial^{\mu} K^- + \dots + \frac{g_{\Lambda^*}}{2} (\bar{\Lambda}^* \gamma^{\mu} p + h.c.) + \dots$$

$$\Delta \epsilon = -i \int d^4 z \langle x | T \widetilde{\omega}_{K^-} \hat{A}_5^0(z) \widetilde{\omega}_{K^-} \hat{A}_5^0(0) | x \rangle \times \left(-\frac{1}{2} \sin^2 \theta \right) \qquad \text{range terms}$$

$$\stackrel{\text{real part}}{\Rightarrow} -\frac{1}{2} f^2 \widetilde{\omega}_{K^-}^2 \sin^2 \theta \left[\rho_p^s \left\{ d_p + \frac{g_{\Lambda^*}^2}{2f^2} \frac{m_{\Lambda^*} - m_N - \omega_{K^-}}{(m_{\Lambda^*} - m_N - \omega_{K^-})^2 + \gamma_{\Lambda^*}^2} \right\} + d_n \rho_n^s \right]$$
pole term $\Lambda (1405)$

Effective nucleon mass

 $\boldsymbol{d}_p = \left(0.35 - \frac{\Sigma_{KN}}{m_K}\right) / (f^2 m_K) \quad \boldsymbol{g}_{\Lambda^*} = 0.58$

$$egin{array}{rcl} m_p^* &=& m_N - g_{\sigma N} \sigma - rac{1}{2} f^2 \widetilde{\omega}_{K^-}^2 \sin^2 heta iggl\{ d_p + rac{{g_{\Lambda^*}}^2}{2f^2} rac{m_{\Lambda^*} - m_N - \omega_{K^-}}{(m_{\Lambda^*} - m_N - \omega_{K^-})^2 + \gamma_{\Lambda^*}^2} iggr\} \ m_n^* &=& m_N - g_{\sigma N} \sigma - rac{1}{2} f^2 \widetilde{\omega}_{K^-}^2 \sin^2 heta \cdot d_n \ . \end{array}$$

Choice of parameters

S-wave on-shell KN scattering lengths [A. D. Martin, Nucl. Phys. B 179 (1981) 33.] $a(K^-p) = -0.67 + i0.64 \text{ fm}$ $a(K^-n) = 0.37 + i0.60 \text{ fm}$ $d_n = \left(0.23 - \frac{\Sigma_{KN}}{m_{K}}\right) / (f^2 m_K) \quad \gamma_{\Lambda^*} = 12.35 \text{ MeV}$ $a(K^+p) = -0.33 \text{ fm}$ $a(K^+n) = -0.16 \text{ fm}$

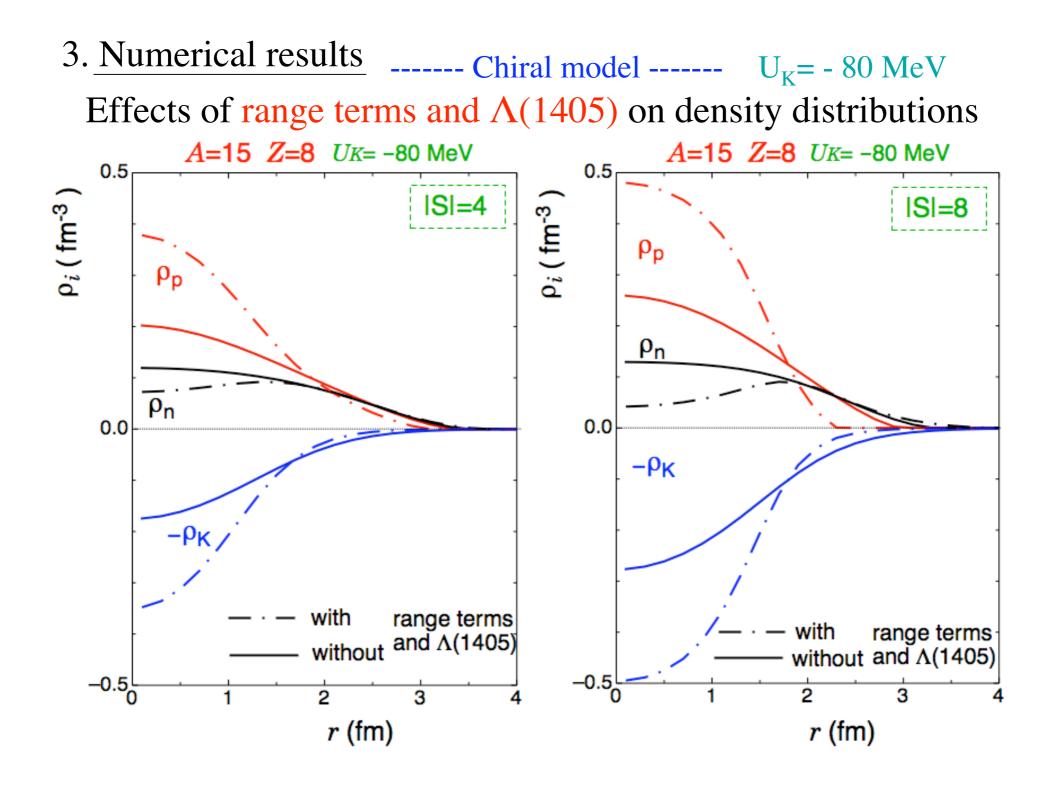
Local density approximation for nucleons (coherent state) • nonlinear K-K int. $\langle K^{-} \rangle = \frac{f}{\sqrt{2}} \theta(\mathbf{r})$ K⁻ field equation $abla^2 heta = \sin heta \, \left[m_K^{*2} \; - \; 2 \widetilde{\omega}_{K^-} X_0 - \widetilde{\omega}_{K^-}^2 \cos heta ight]$ $- \widetilde{\omega}_{K^+}^2 \cos\theta \left\{ \rho_p^s \left(\frac{d_p}{2} + \frac{g_{\Lambda^*}^2}{2f^2} \frac{m_{\Lambda^*} - m_N - \omega_{K^-}}{(m_{\Lambda^*} - m_N - \omega_{K^-})^2 + \gamma_{\Lambda^*}^2} \right) + \frac{d_n}{p_n^s} \right\} \right|$ $m_{K}^{*2} = m_{K}^{2} - 2 \widehat{g_{\sigma K}} m_{K} \sigma \quad X_{0} = \widehat{g_{\omega K}} \omega_{0} + \widehat{g_{\rho K}} R_{0}$ Equations of motion for mesons $abla^2\sigma+m_\sigma^2\sigma=-rac{dU}{d\sigma}+g_{\sigma N}(ho_n^s+ ho_p^s)-2g_{\sigma K}m_Kf^2(\cos heta-1)$ $-\nabla^2 \omega_0 + m_{\omega}^2 \omega_0 = (g_{\omega N}(\rho_n + \rho_p) + 2f^2 g_{\omega K}(\cos\theta - 1)(\omega_K - V_{\text{Coulomb}})$ Lowest energy of K⁻ $abla^2 R_0 + m_ ho^2 R_0 = g_{ ho N}(ho_p - ho_n) + 2f^2 g_{ ho K}(\cos heta - 1)(\omega_K - V_{ m Coulomb})$ $\nabla^2 V_{\text{Coulomb}} = 4\pi e^2 \rho_{\text{ch}}$

2.3 Choice of parameters

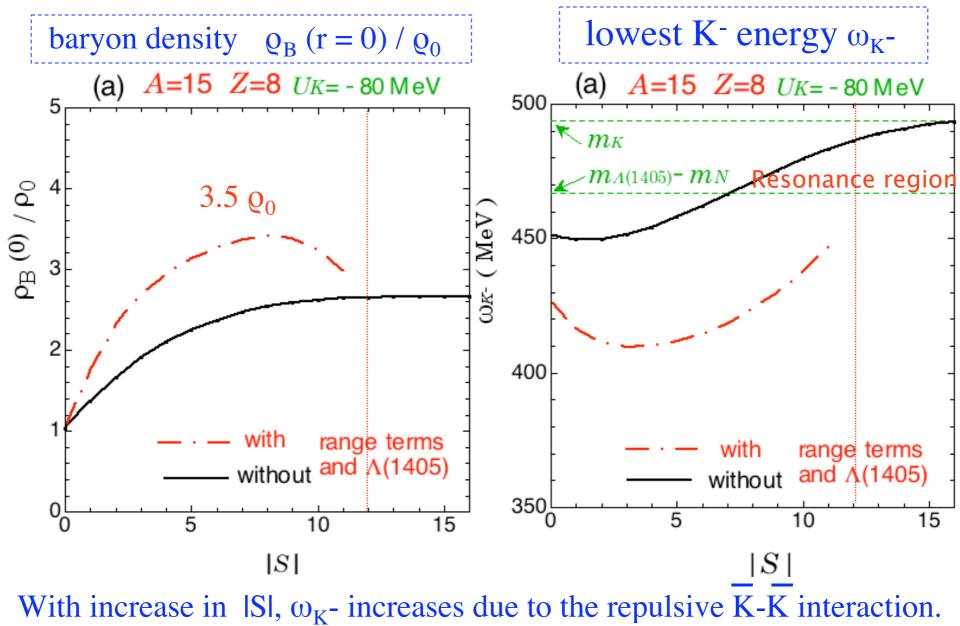
Reproduce gross features of normal nuclei and nuclear matter • saturation properties of nuclear matter $(\rho_0 = 0.153 \text{ fm}^{-3})$ • binding energy of nuclei and proton-mixing ratio • density distributions of p and n $g_{\omega K} = g_{\omega N}/3$ $g_{\rho K} = g_{\rho N}$ quark and isospin counting rule $g_{\sigma K} \leftarrow U_K = -(g_{\sigma K}\sigma + g_{\omega K}\omega_0)$ at ρ_0 in symmetric nuclear matter

$U_K(MeV)$	$g_{\sigma K}$	$g_{\omega K}$	$g_{\rho K}$	$g_{\sigma N}$	$g_{\omega N}$	$g_{ ho N}$	$m_{\sigma} (MeV)$
-80	0.97	2.91	4.27	6.39	8.72	4.27	400
-120	2.21	33	22	***	· 33	**	**
D. Gazda et al.	1.22	3.02	3.02	10.44	12.96	4.38	526

for ²⁰O+ISI K⁻



Contribution to the effective nucleon mass $m_p^* = m_N - g_{\sigma N}\sigma + \Delta m_p(\text{range}) + \Delta m_p(\Lambda(1405))$ $\Delta m_p(\Lambda(1405)) =$ $-\frac{1}{2}f^{2}(\omega_{K^{-}}-V_{\text{Coul.}})^{2}\sin^{2}\theta\cdot\frac{g_{\Lambda^{*}}^{2}}{2f^{2}}\frac{m_{\Lambda^{*}}-m_{N}-\omega_{K^{-}}}{(m_{\Lambda^{*}}-m_{N}-\omega_{K^{-}})^{2}+\gamma_{\Lambda^{*}}^{2}}<0$ (a) A=15 Z=8 UK=-80 MeV (attractive for $\omega_{K^-} < m_{\Lambda^*} - m_N$) m_n^* (r = 0) (MeV) $\Delta m_p(\text{range}) =$ 500 $-rac{1}{2}f^2(\omega_{K^-}-V_{ ext{Coul.}})^2\sin^2 heta\cdot d_p>0$ $m_N - \mathbf{g}_{\sigma N} \sigma (\mathbf{r} = 0)$ $m_p^*(\mathbf{r}=0)$ (repulsive) Δm_n (range) (r = 0) 0 $\Delta m_p (range) (r = 0)$ $m_n^* = m_N - g_{\sigma N}\sigma + \Delta m_n$ (range) $\Delta m_{p (A(1405))}$ (r = 0 $\Delta m_n(\text{range}) =$ $-\frac{1}{2}f^2(\omega_{K^-}-V_{\text{Coul.}})^2\sin^2\theta\cdot d_n>0$ -500(repulsive) 5 10 15 0 ISI: the number of trapped K⁻



For $|S| \ge 12$, K⁻ mesons become unbound with $\omega_{K^-} \gtrsim m(1405) - m_N$

(above the resonance region)

4. Summary and outlook

We have studied the structure of multi-antikaonic nuclei (MKN) in the relativistic mean-field theory by taking into account kaon dynamics on the basis of chiral symmetry.

Second-order Effects (SOE)

(i) pole contribution of $\Lambda(1405)$ to K⁻ p int. (ii) Range terms ($\propto d_p \omega_{K^-}^2$, $d_n \omega_{K^-}^2$)

Due to the attractive interaction from the $\Lambda(1405)$ -pole contribution (i), K⁻ and proton are more attracted each other than the case without SOE.

• Central densities of K⁻ and proton become larger. ($\rho_B^{(0)} = 3.5 \rho_0$ for U_K=-80 MeV)) ($\rho_B^{(0)} = 3.8 \rho_0$ for U_K=-120 MeV)

• Density distributions for K⁻ and proton become more uniform.

Density distribution for neutron is pushed outward

due to the repulsive effect from the range term (ii).

neutron skin $1 \sim 2$ fm for $|S| = 4 \sim 10$.

remarkable for large ISI

Future problems

• $g_{\sigma K}$: (s-wave scalar attraction Σ_{KN} term) <----- U_K

 $g_{\omega K}, g_{\rho K}$: s-wave vector int. < ----- • quark model,

- vector-meson dominance
- contribution from Φ meson

role of hyperons (Y)

• inelastic channel coupling effects (kaon decay width . . .)

 $\bar{K}N \to \pi\Lambda, \pi\Sigma$

• Hyperon -mixing effects --- a possibility of more strongly bound states (coexistence of antikaons and hyperons) [T. Muto, Phys. Rev. C 77 (2008) 015810; Nucl. Phys. A804 (2008) 322.]

Microscopic effects (shell structure, clustering structure . . .)

possible observation of multi K nuclei produced in experiments (heavy-ion collisions, J-PARC, GSI FAIR, •••)

• information of \overline{K} - \overline{K} interactions