

0 0

Hypernuclear properties derived from the new interaction model ESC08

Repulsive U_{Σ} and Attractive U_{Ξ}

Y. Yamamoto

with E. Hiyama Th.A. Rijken (Nijmegen)

Proposed by Th.A. Rijken

Extended Soft-Core Model (ESC)

•Two-meson exchange processes are treated explicitly

Meson-Baryon coupling constants are taken consistently with Quark-Pair Creation model

One-Boson-Exchanges:

Two-Meson-Exchanges:

Meson-Pair-Exchanges:

PS, S, V, AV nonets

PS-PS exchange

(ππ),(πρ),(πω),(πη),(σσ),(πΚ)

Parameter fitting consistent with hypernuclear data (G-matrix)

Details are given by Rijken tomorrow

From ESC04 to ESC08 (Th.A. Rijken, M.M. Nagels and Y.Y.)

developed with 7 novel ingredients

Important: Parameter search was performed imposing constraints from the requirement of attractive $\Lambda\Lambda$ and ΞN forces

Features of QCM are included phenomenologically

Two versions : ESC08a & ESC08b

G-matrix result : U_{Λ}

Table 1: Values of U_{Λ} at normal density and partial wave contributions in ${}^{2S+1}L_J$ states for ESC08a/b from the G-matrix calculations with the QTQ prescriptions (Gap choice).

	${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Λ}
ESC08a	-12.7	-22.2	3.0	0.1	1.4	-3.6	-1.6	-35.6
ESC08b	-12.3	-19.7	2.7	-0.2	1.5	-4.2	-1.7	-34.0
ESC04a	-13.7	-20.5	0.6	0.2	0.5	-4.5	-1.0	-38.5
NSC97f	-14.3	-22.4	2.4	0.5	4.0	-0.7	-1.2	-31.8

AN G-matrices for ESC08a/b are similar to those for ESC04a

$$U_0(S) = \frac{1}{4} \left\{ U({}^3S_1) + U({}^1S_0) \right\}$$
$$U_{\sigma\sigma}(S) = \frac{1}{12} \left\{ U({}^3S_1) - 3U({}^1S_0) \right\}$$

	$U_0(S)$	$U_{\sigma\sigma}(S)$	$U_0(P)$	$U_{\sigma\sigma}(P)$	$U_{LS}(P)$	$U_{Ten}(P)$
ESC08a	-8.73	1.32	0.08	-0.82	-0.43	0.14
ESC08b	-8.02	1.44	-0.02	-0.75	-0.45	0.19
ESC04a	-8.55	1.73	-0.18	-0.25	-0.45	0.08
NSC97e	-9.55	1.05	0.72	-0.44	-0.46	0.17
NSC97f	-9.19	1.70	0.92	-0.50	-0.47	0.22

ESC08a/b $U_{\sigma\sigma}(S)$ are between those of NSC97e and f $U_0(P)$ are almost vanishing

$$U_B^{ls}(r) = K_B \frac{1}{r} \frac{d\rho}{dr} \vec{l}\vec{s} \quad \text{with } B = N, \Lambda$$

where $K_N = -\frac{1}{2}\pi S_{LS}$ and $K_\Lambda = -\frac{1}{3}\pi (S_{LS} + S_{ALS})$
 $S_{LS,ALS} = \frac{3}{\bar{q}} \int_0^\infty r^3 j_1(\bar{q}r) G_{LS,ALS}^{3O}(r) dr$
with $\bar{q} \sim 0.7 \text{ fm}^{-1}$

Model	S_{SLS}	S_{ALS}	K_{Λ}
ESC08a	-23.3	15.5	8.1
ESC08b	-24.3	15.5	9.2
ESC04a	-24.9	12.1	13.4
NSC97f	-26.9	9.5	18.1

 $S_{ALS}\ of\ ESC08a/b$ is larger than those of ESC04 and NSC97 models

G-matrix result : U_{Σ}

model	T	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
ESC08a	1/2	11.3	-23.9	2.3	1.7	-6.2	-1.4	-0.7	
	3/2	-11.7	44.8	-7.2	-1.7	6.5	0.2	-0.2	13.4
ESC08b	1/2	10.3	-26.2	2.5	2.2	-7.9	-1.7	-0.8	
	3/2	-10.6	52.7	-6.2	-2.0	7.4	0.8	-0.1	20.3
ESC04a	1/2	11.6	-26.9	2.4	2.7	-6.4	-2.0	-0.8	
	3/2	-11.3	2.6	-6.8	-2.3	5.9	-5.1	-0.2	-36.5
NSC97f	1/2	14.9	-8.3	2.1	2.5	-4.6	0.5	-0.5	
	3/2	-12.4	-4.1	-4.1	-2.1	6.0	-2.8	-0.1	-12.9

Pauli-forbidden state in QCM → strong repulsion in T=3/2 ³S₁ state taken into account by adapting Pomeron exchange in ESC approach

G-matrix result : U_{Ξ}

model	T	${}^{1}S_{0}$	${}^{3}S_{1}$	$^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}	Γ_{Ξ}
ESC08a	0	6.0	-1.0	-0.3	-2.6	1.3	-0.9		
	1	8.5	-28.0	0.6	0.4	-3.7	-0.6	-20.2	5.8
ESC08a'	0	5.6	-1.1	-0.3	-2.6	1.3	-0.9		
adjusted	1	8.4	-21.5	0.6	0.4	-3.7	-0.6	-14.5	7.0
ESC08b	0	2.4	1.9	-0.6	-1.2	-0.1	-0.7		
	1	9.1	-37.8	0.6	-0.5	-3.6	-1.3	-31.8	0.9
ESC04d	0	6.4	-19.6	1.1	1.2	-1.3	-2.0		
	1	6.4	-5.0	-1.0	-0.6	-1.4	-2.8	-18.7	11.3

ESC08a' is consistent with $U_\Xi\approx$ -14 MeV (experimental) used for cluster model calculations

Attractive U_{Ξ} in ESC08

dominant contribution : "deuteron-like" $T=1 \ {}^{3}S_{1} \ ({}^{33}S_{1})$ state

Strong $\Xi N - \Lambda \Sigma - \Sigma \Sigma$ coupling tensor-type

Importance of tensor coupling in "deuteron-like" channels

Switching off coupling interactions

$$U_{\Lambda} (T=1/2 \ {}^{3}S_{1}) -21.2 \longrightarrow +18.9 : \Lambda N - \Sigma N \text{ tensor}$$

$$U_{\Xi} (T=1 \ {}^{3}S_{1}) -18.7 \longrightarrow +14.7 : \Xi N - \Lambda \Sigma - \Sigma \Sigma \text{ tensor}$$
in MeV

Strong T = $1^{3}S_{1} \equiv N$ attraction is not so peculiar ! Origin of $\equiv N - \Lambda \Sigma - \Sigma \Sigma$ tensor coupling interaction ?

An application of $\Xi N G$ -matrix interaction to Ξ -hypernuclei

PHYSICAL REVIEW C 78, 054316 (2008)

Light Ξ hypernuclei in four-body cluster models

E. Hiyama

Nishina Center for Accelerator-Based Science, Institute for Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan

Y. Yamamoto

Physics Section, Tsuru University, Tsuru, Yamanashi 402-8555, Japan

T. Motoba

Laboratory of Physics, Osaka Electro-Comm. University, Neyagawa 572-8530, Japan

Th. A. Rijken

Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands

M. Kamimura

Department of Physics, Kyushu University, 812-8581, Japan (Received 9 September 2008; published 24 November 2008)

 $_{\Xi}^{7} \mathbf{H} (\alpha nn \Xi^{-}) \quad \alpha \alpha \Longrightarrow nn \quad n \Longrightarrow \alpha$

In $(a nn \Xi)$ system

Interactions $(an, ann, a\Xi, n\Xi)$ are taken so as to reproduce binding energies of corresponding sub-systems

For Ξa folding potential

Complex $\Xi N G$ -matrix interaction

$$G_{TS}^{(\pm)}(r,k_F) = \sum_{i=1}^{3} \left(a_i + b_i k_F + c_i k_F^2 \right) \exp\left(-\frac{r^2}{\beta_i^2} \right),$$

where k_F is the Fermi momentum of nuclear matter

For $n \Xi^-$ interaction

T=1 ${}^{3}S_{1} \equiv N - \Lambda \Sigma - \Sigma \Sigma$ coupling effect is simulated by a single-channel interaction approximately

Light Ξ^- hypernuclei produced by $p(K^-, K^+)\Xi^-$ reactions on available nuclear targets

in the cases of ESC04d and NHC-D

Let us perform the same cluster-model calculations

 $\Xi~N$ interactions (ESC08a') in average are adjusted so as to be consistent with $U_{\Xi}\approx$ -14 MeV or $B_{\Xi}~(^{12}C_{\Xi})\approx$ 2.2 MeV

as well as ESC04d case

Note ! Spin- & isospin-averaged interactions of ESC04d and ESC08a' are adjusted so as to be similar to each other

calculated by E. Hiyama

⁷Li(K⁻,K⁺) $_{\Xi}^{7}$ H ($\alpha nn \Xi^{-}$)

calculated by E. Hiyama

ESC08a: $a \equiv -is$ less bound, but $a nn \equiv -is$ more bound owing to more attractive $(n \equiv -)$ interaction

Light Ξ^- hypernuclei produced by $p(K^-, K^+)\Xi^-$ reactions on available nuclear targets $^{12}C \Rightarrow ^{12}_{\Xi^-}Be (\alpha \alpha t \Xi^-)$ bound (assumed) $^{11}\text{B} \Rightarrow ^{11}_{\Xi^-}\text{Li} (\alpha \alpha nn \Xi^-)$ bound (maybe) $^{10}\text{B} \Rightarrow \frac{10}{\Xi^{-}}\text{Li} (\alpha \alpha n \Xi^{-}) \text{ bound } (\alpha \alpha \text{ bound})$ ${}^{9}\text{Be} \Rightarrow {}^{9}_{\Xi^{-}}\text{He} (\alpha tn\Xi^{-}) \text{ bound (maybe)}$ ⁷Li $\Rightarrow \frac{7}{\Xi}$ -H ($\alpha nn\Xi^{-}$) bound (αnn bound) ${}^{6}\text{Li} \Rightarrow {}^{6}_{\Xi^{-}}\text{H} (\alpha n \Xi^{-}) \text{ bound (maybe)}$ $^{4}\text{He} \Rightarrow (pnn\Xi^{-}) \text{ bound (maybe)}$ (K^-,K^+) reactions $^{3}\text{He} \Rightarrow (pn\Xi^{-}) \text{ bound (maybe)}$ lead to neutron-rich -systems from $^{3}\text{H} \Rightarrow (nn\Xi^{-}) \text{ bound (maybe)}$ available targets $^{2}\mathrm{H} \Rightarrow (n\Xi^{-}) \sim \mathrm{bound}$ in the cases of ESC08a' owing to strong $n\Xi^-$ attractions

Various Ξ^- nuclear bound states are produced by (K⁻,K⁺) reactions !

Conclusion

S=0 and S=-1 sectors in ESC08 are of nice features especially $U_{\Sigma}\!>\!0$

 Ξ N parts in ESC08 are attractive enough to make various Ξ -hypernuclei

The attraction is caused mainly by the $\Xi N - \Lambda \Sigma - \Sigma \Sigma$ tensor coupling interaction in ${}^{33}S_1$ state contribution

The strong attraction in ${}^{33}S_1$ $(n \ \Xi^-)$ state is favorable to Ξ -hypernuclei produced by (K^-,K^+) reactions on available nuclear targets