Baryon-baryon interactions in chiral effective field theory

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

Hyp-X, Tokai, September 16, 2009

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

2 *YN*, *YY*, \equiv *Y*, \equiv \equiv in chiral effective field theory

3 LO Results

Johann Haidenbauer Baryon-baryon interactions

(日) (同) (日) (日)

3

seminal work

S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3

first application to the NN interaction C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996) 2086

further investigations

J.L. Friar, S.A. Coon C.A. da Rocha, R. Higa, M.R. Robilotta N. Kaiser, R. Brockmann, S. Gerstendörfer, W. Weise D.B. Kaplan, M.J. Savage, M.B. Wise

most advanced results (N³LO)

D.R. Entem and R. Machleidt, PRC 68 (2003) 041001 E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362

・ロン ・四 と ・ ヨ と ・ ヨ と …

Chiral Effective Field Theory for the NN interaction

NLO, N²LO, N³LO

(E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362)

★ E → ★ E →

YN, YY, \equiv Y, \equiv in chiral effective field theory

Advantages:

- Power counting systematic improvement by going to higher order
- Possibility to derive two- and three baryon forces and external current operators in a consistent way

Obstacle: YN data base is rather poor practically no information on YY $(\rightarrow \text{ impose } SU(3)_f \text{ constraints})$

few investigations so far (for YN only):

- C.K. Korpa et al., PRC 65 (2001) 015208
- S.R. Beane et al., NPA747 (2005) 55

pion-less theory; Kaplan-Savage-Wise resummation scheme

We follow the scheme of E. Epelbaum et al.

(E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362)

Power counting

$$V_{
m eff} \equiv V_{
m eff}(\boldsymbol{Q},\boldsymbol{g},\mu) = \sum_{
u} (\boldsymbol{Q}/\Lambda)^{
u} \, \mathcal{V}_{
u}(\boldsymbol{Q}/\mu,\boldsymbol{g})$$

- Q ... soft scale (baryon three-momentum, Goldstone boson four-momentum, Goldstone boson mass)
- Λ ... hard scale
- g ... pertinent low-energy constants
- μ ... regularization scale
- \mathcal{V}_{ν} ... function of order one
- $\nu \geq 0$... chiral power

Lowest order (LO): $\nu = 0$

- a) non-derivative four-baryon contact terms
- b) one-meson (Goldstone boson) exchange diagrams

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Leading order (LO) contact term for NN

The LO contact term for the NN interaction:

$$\mathcal{L} = C_i \left(\bar{N} \Gamma_i N \right) \left(\bar{N} \Gamma_i N \right)$$

 $\Gamma_{1} = 1 \; , \; \Gamma_{2} = \gamma^{\mu} \; , \; \Gamma_{3} = \sigma^{\mu\nu} \; , \; \Gamma_{4} = \gamma^{\mu}\gamma_{5} \; , \; \Gamma_{5} = \gamma_{5}$

Considering the large components of the nucleon spinors only, the LO contact term becomes

$$\mathcal{L} = -\frac{1}{2} C_{\mathcal{S}} \left(\varphi_{\mathcal{N}}^{\dagger} \varphi_{\mathcal{N}} \right) \left(\varphi_{\mathcal{N}}^{\dagger} \varphi_{\mathcal{N}} \right) - \frac{1}{2} C_{\mathcal{T}} \left(\varphi_{\mathcal{N}}^{\dagger} \sigma \varphi_{\mathcal{N}} \right) \left(\varphi_{\mathcal{N}}^{\dagger} \sigma \varphi_{\mathcal{N}} \right)$$

The LO contact term potential resulting from the interaction Lagrangian:

$$V^{NN o NN} = C_S + C_T \sigma_1 \cdot \sigma_2$$

 C_S and C_T ... low-energy constants; to be determined in a fit to the experimental data.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Leading order contact terms for YN and YY

spin-momentum structure of the LO contact term potential resulting from the *BB* interaction Lagrangian:

$$V^{BB
ightarrow BB} = C_S^{BB
ightarrow BB} + C_T^{BB
ightarrow BB} \sigma_1 \cdot \sigma_2$$

SU(3) structure for scattering of two octet baryons: direct product:

$$8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$$

There are only 6 independent low-energy constants for the *BB* interaction!

(8 independent spin-isospin channels in YN alone!)

 C_S^i , C_T^i can be expressed by the coefficients corresponding to the $SU(3)_f$ irreducible representations: C_S^1 , C_S^{8a} , C_S^{8s} , $C_S^{10^*}$, C_S^{10} , C_S^{27}

イロト 不得 とくき とくきとうき

U(3) content

BB contact interactions in terms of $SU(3)_f$ irreducible representations

	Channel	Isospin	<i>V</i> _{3S1}
<i>S</i> = 0	$NN \rightarrow NN$	0	C^{10^*}
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8a}+C^{10^*} ight)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(-C^{8a}+C^{10^*} ight)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{3}{2}$	C ¹⁰
S = -2	$\equiv N \rightarrow \equiv N$	Ō	C^{8_a}
	$\equiv N \rightarrow \equiv N$	1	$rac{1}{3}\left(C^{10}+C^{10^*}+C^{8_a} ight)$
	$\equiv N \rightarrow \Sigma \Lambda$	1	$\frac{\sqrt{6}}{6}\left(C^{10}-C^{10^*}\right)$
	$\equiv N \rightarrow \Sigma\Sigma$	1	$\frac{\sqrt{2}}{6}\left(C^{10}+C^{10^*}-2C^{8_a}\right)$
	$\Sigma\Lambda\to\Sigma\Lambda$	1	$\frac{1}{2}\left(C^{10}+C^{10^*}\right)$
	$\Sigma\Lambda\to\Sigma\Sigma$	1	$\frac{\sqrt{3}}{6}\left(C^{10}-C^{10*}\right)$
	$\Sigma\Sigma\to\Sigma\Sigma$	1	$\frac{1}{6}\left(C^{10}+C^{10^*}+4C^{8_a}\right)$

Johann Haidenbauer Baryon-baryon interactions

<ロト < 回 > < 回 > < 回 > 、

SU(3) content

	Channel	Isospin	V _{1S0}
S = 0	$NN \rightarrow NN$	1	C^{27}
S = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}(-C^{27}+C^{8s})$
	$\Sigma N \rightarrow \Sigma N$	1 2	$\frac{10}{10}(C^{27}+9C^{8_s})$
	$\Sigma N \rightarrow \Sigma N$	32	Č ²⁷
S = -2	$\Lambda\Lambda \to \Lambda\Lambda$	Ō	$\frac{1}{40} \left(27C^{27} + 8C^{8s} + 5C^{1} \right)$
	$\Lambda\Lambda \to \Xi N$	0	$\frac{-1}{40} \left(18C^{27} - 8C^{8s} - 10C^{1} \right)$
	$\Lambda\Lambda\to\Sigma\Sigma$	0	$\frac{\sqrt{3}}{40}\left(-3C^{27}+8C^{8_s}-5C^{1}\right)$
	$\equiv N \rightarrow \equiv N$	0	$\frac{1}{40} \left(12C^{27} + 8C^{8s} + 20C^{1} \right)$
	$\equiv N \rightarrow \Sigma \Sigma$	0	$\frac{\sqrt{3}}{40}\left(2C^{27}+8C^{8_{s}}-10C^{1} ight)$
	$\Sigma\Sigma\to\Sigma\Sigma$	0	$\frac{1}{40}(C^{27}+24C^{8_s}+15C^1)$
	$\equiv N \rightarrow \equiv N$	1	$\frac{1}{5}(2C^{27}+3C^{8_s})$
	$\equiv N \rightarrow \Sigma \Lambda$	1	$\frac{\sqrt{6}}{5} \left(C^{27} - C^{8_s} \right)$
	$\Sigma\Lambda\to\Sigma\Lambda$	1	$\frac{1}{5}(3C^{27}+2C^{8_s})$
	$\Sigma\Sigma\to\Sigma\Sigma$	2	\check{C}^{27}

five contact terms for the S = -1 channels one additional contact term (C^1) for the I = 0, S = -2 channels

One pseudoscalar-meson exchange

$$\mathcal{L} = -f_{NN\pi}\bar{N}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}N \cdot \partial_{\mu}\boldsymbol{\pi} + if_{\Sigma\Sigma\pi}\bar{\boldsymbol{\Sigma}}\gamma^{\mu}\gamma_{5} \times \boldsymbol{\Sigma} \cdot \partial_{\mu}\boldsymbol{\pi} -f_{\Lambda\Sigma\pi} \left[\bar{\Lambda}\gamma^{\mu}\gamma_{5}\boldsymbol{\Sigma} + \bar{\boldsymbol{\Sigma}}\gamma^{\mu}\gamma_{5}\Lambda\right] \cdot \partial_{\mu}\boldsymbol{\pi} - f_{\Xi\Xi\pi}\bar{\Xi}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\Xi \cdot \partial_{\mu}\boldsymbol{\pi} -f_{\Lambda NK} \left[\bar{N}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K + \bar{\Lambda}\gamma^{\mu}\gamma_{5}N\partial_{\mu}K^{\dagger}\right] -f_{\Xi\Lambda K} \left[\bar{\Xi}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}K_{c} + \bar{\Lambda}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}K_{c}^{\dagger}\right] -f_{\Sigma NK} \left[\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\partial_{\mu}K^{\dagger}\boldsymbol{\tau}N + \bar{N}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\partial_{\mu}K \cdot \boldsymbol{\Sigma}\right] -f_{\Sigma\Xi K} \left[\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\partial_{\mu}K_{c}^{\dagger}\boldsymbol{\tau}\Xi + \bar{\Xi}\gamma^{\mu}\gamma_{5}\boldsymbol{\tau}\partial_{\mu}K_{c} \cdot \boldsymbol{\Sigma}\right] - f_{NN\eta_{8}}\bar{N}\gamma^{\mu}\gamma_{5}N\partial_{\mu}\eta -f_{\Lambda\Lambda\eta_{8}}\bar{\Lambda}\gamma^{\mu}\gamma_{5}\Lambda\partial_{\mu}\eta - f_{\Sigma\Sigma\eta_{8}}\bar{\boldsymbol{\Sigma}}\cdot\gamma^{\mu}\gamma_{5}\boldsymbol{\Sigma}\partial_{\mu}\eta - f_{\Xi\Xi\eta_{8}}\bar{\Xi}\gamma^{\mu}\gamma_{5}\Xi\partial_{\mu}\eta$$

One pseudoscalar-meson exchange

$$V^{B_{1}B_{2} \to B_{1}'B_{2}'} = -f_{B_{1}B_{1}'P}f_{B_{2}B_{2}'P}\frac{(\sigma_{1} \cdot \mathbf{k})(\sigma_{2} \cdot \mathbf{k})}{\mathbf{k}^{2} + m_{P}^{2}}$$

 $f_{B_1B'_1P}$... coupling constants m_P ... mass of the exchanged pseudoscalar meson

• SU(3) breaking due to the mass splitting of the ps mesons $(m_{\pi} = 138.0 \text{ MeV}, m_{K} = 495.7 \text{ MeV}, m_{\eta} = 547.3 \text{ MeV})$ is taken into account

Details:

(H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244) (H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29)

Coupled channels Lippmann-Schwinger Equation

$$\begin{split} T_{\rho'\rho}{}^{\nu'\nu,J}(p',p) &= V_{\rho'\rho}{}^{\nu'\nu,J}(p',p) \\ &+ \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} V_{\rho'\rho''}{}^{\nu'\nu'',J}(p',p'') \frac{2\mu_{\nu''}}{p^2 - p''^2 + i\eta} T_{\rho''\rho}{}^{\nu''\nu,J}(p'',p) \\ \rho', \ \rho &= \Lambda \Lambda, \Sigma N \\ &= \Lambda, \Sigma \Sigma, \Xi N, \Sigma \Lambda \\ &= \Xi \Lambda, \Xi \Sigma \end{split}$$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in the LS equation is cut off with the regulator function:

$$V_{\rho'\rho}{}^{\nu'\nu,J}(\rho',p) \to f^{\wedge}(\rho')V_{\rho'\rho}{}^{\nu'\nu,J}(\rho',p)f^{\wedge}(\rho); \quad f^{\wedge}(\rho) = e^{-(\rho/\Lambda)^4}$$

consider values $\Lambda = 550 - 700 \text{ MeV}$

(No SU(3) constraints from the NN sector are imposed!)

(画) (ヨ) (ヨ)

N integrated cross sections

イロト 不同 トイヨト イヨト

		EFT	LO		Jülich '04	NSC97f	experiment*
Λ [MeV]	550	600	650	700			
$a_s^{\wedge p}$	-1.90	-1.91	-1.91	-1.91	-2.56	-2.51	$-1.8^{+2.3}_{-4.2}$
$a_t^{\Lambda p}$	-1.22	-1.23	-1.23	-1.23	-1.66	-1.75	$-1.6^{+1.1}_{-0.8}$
a _s ^{Σ+p}	-2.24	-2.32	-2.36	-2.29	-4.71	-4.35	
$a_t^{\Sigma^+ p}$	0.70	0.65	0.60	0.56	0.29	-0.25	
(³ _A H) <i>E</i> _B	-2.35	-2.34	-2.34	-2.36	-2.27	-2.30	-2.354(50)

* A. Gasparyan et al., PRC 69 (2004) 034006 \Rightarrow extract from final-state interaction:

- $pp \rightarrow K^+ \Lambda p$ (COSY, Jülich \rightarrow H. Machner, 2-B, Thu., 16:45)
- $\gamma d \rightarrow K^+ \Lambda n$ (SPring-8)

イロト イポト イヨト イヨト 二日

Λ separation energies for ${}^{4}_{\Lambda}$ H:

(Andreas Nogga, arXiv:nucl-th/0611081)

		EFT	LO	Jülich '04	NSC97f	expt.	
<mark>۸</mark> [MeV]	550	600	650	700			
<i>E_{sep}</i> (0 ⁺) [MeV]	2.63	2.46	2.36	2.38	1.87	1.60	2.04
<i>E_{sep}</i> (1 ⁺) [MeV]	1.85	1.51	1.23	1.04	2.34	0.54	1.00
∆ <i>E_{sep}</i> [MeV]	0.78	0.95	1.13	1.34	-0.48	0.99	1.05
CSB- <mark>0</mark> + [MeV]	0.01	0.02	0.02	0.03	-0.01	0.12	0.35
CSB- <mark>1</mark> + [MeV]	-0.01	-0.01	-0.01	-0.01	_	-0.01	0.24

(CSB: $E_{sep}(^{4}_{\Lambda}\text{He}) - E_{sep}(^{4}_{\Lambda}\text{H}))$

\Rightarrow LO YN EFT yields a qualitative description of four-body hypernuclei

イロト 不得 トイヨト イヨト

Strangeness S=-2 channels in the particle basis:

$$Q = +2: \Sigma^{+}\Sigma^{+}$$

$$Q = +1: \Xi^{0}p, \Sigma^{+}\Lambda, \Sigma^{0}\Sigma^{+}$$

$$Q = 0: \Lambda\Lambda, \Xi^{0}n, \Xi^{-}p, \Sigma^{0}\Lambda, \Sigma^{0}\Sigma^{0}, \Sigma^{-}\Sigma^{+}$$

$$Q = -1: \Xi^{-}n, \Sigma^{-}\Lambda, \Sigma^{-}\Sigma^{0}$$

$$Q = -2: \Sigma^{-}\Sigma^{-}$$

There is some experimental information on the Q = 0 channel:

•
$$\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) - 2B_{\Lambda}({}^{5}_{\Lambda}\text{He}) = 1.01 \pm 0.20^{+0.18}_{-0.11} \text{ MeV}$$

(H. Takahashi et al., Phys. Rev. Lett. 87 (2001) 212502)

• $\Xi^- p$ scattering cross section at $p_{lab} = 500$ MeV/c

(J.K. Ahn et al., Phys. Lett. B 633 (2006) 214)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

3

YY integrated cross sections

cut off A= 600 MeV

a^{AA}_{1S0}; r^{AA}_{1S0} [in fm] -1.52; 0.59 EFT (PLB 653 (2007) 29) -1.32; 4.40 ESC04d (Rijken) (PRC 73 (2006) 044008) -0.81; 3.80 fss2 (Fujiwara) (Prog. Part. Nucl. Phys. 58 (2007) 439)

 $\sigma_{exp} = 4.3^{+6.3}_{-2.7} \text{ mb}$ at $p_{lab} = 500 \text{ MeV/c}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

J.K. Ahn et al., 2006

Johann Haidenbauer Baryon-baryon interactions

YY integrated cross sections

cut off A= 600 MeV

イロン 不得 とくほ とくほ とうほ

 $\sigma^{exp} \leq 24 \text{ mb}$ J.K. Ahn et al., 2006

YY integrated cross sections

cut off A= 600 MeV

 $a_{3S_1}^{\equiv^0 p}; r_{3S_1}^{\equiv^0 p}$ [in fm] -0.003; - EFT -0.203; 27.5 fss2 (Fujiwara)

イロン 不得 とくほ とくほ とうほ

5 = -3, -4 sector

BB contact interactions in terms of $SU(3)_f$ irreducible representations

	Channel	Isospin	V _{3S1}	Isospin	V _{1.S0}
<i>S</i> = 0	$NN \rightarrow NN$	0	C ^{10*}	1	C ²⁷
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$	$\frac{1}{2}$	$\tfrac{1}{10}\left(9C^{27}+C^{8_{\mathcal{S}}}\right)$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(-C^{8a}+C^{10^{*}}\right)$	$\frac{1}{2}$	$\frac{3}{10}\left(-C^{27}+C^{8s} ight)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$	$\frac{1}{2}$	$rac{1}{10}\left(C^{27}+9C^{8s} ight)$
	$\Sigma N \rightarrow \Sigma N$	$\frac{3}{2}$	C ¹⁰	32	C ²⁷
S = -3	$\Xi \Lambda \to \Xi \Lambda$	1 2	$\frac{1}{2}(C^{8_a}+C^{10})$	1/2	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$
	$\Xi \Lambda \to \Xi \Sigma$	$\frac{1}{2}$	$\frac{1}{2}(-C^{8_a}+C^{10})$	$\frac{1}{2}$	$\frac{3}{10}(-C^{27}+C^{8_s})$
	$\Xi\Sigma\to\Xi\Sigma$	$\frac{1}{2}$	$\frac{1}{2}(C^{8a}+C^{10})$	1/2	$\frac{1}{10}(C^{27}+9C^{8s})$
	$\Xi\Sigma \to \Xi\Sigma$	32	\tilde{C}^{10*}	32	Č ²⁷
S = -4	$\Xi\Xi \rightarrow \Xi\Xi$	Ō	C ¹⁰	1	C ²⁷

10 and 10^{*} representations interchange their roles when going from the S = 0, -1 to the S = -3, -4 channels

EE integrated cross sections

J.H., U.-G. Meißner, arXiv:0907.1395 [nucl-th]

イロト 不得 とくほと くほとう

3

		EFT	LO	NSC97a	NSC97f	fss2	
∧ [MeV]	550	600	650	700			
$a_s^{\equiv \wedge}$	-33.5	35.4	12.7	9.07	-0.80	-2.11	-1.08
$a_t^{\equiv \wedge}$	0.33	0.33	0.32	0.31	0.54	0.33	0.26
$a_s^{\Xi^0 \Sigma^+}$	4.28	3.45	2.97	2.74	4.13	2.32	-4.63
$a_t^{\Xi^0 \Sigma^+}$	-2.45	-3.11	-3.57	-3.89	3.21	1.71	-3.48
$a_s^{\equiv\equiv}$	3.92	3.16	2.71	2.47	17.81	2.38	-1.43
$a_t^{\equiv \equiv}$	0.63	0.59	0.55	0.52	0.40	0.48	3.20

(Nijmegen: Stoks & Rijken, PRC 59 (1999) 3009) (fss2: Fujiwara, Suzuki & Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439)

イロン 不聞 とくほど 不良とう

YN interaction in NLO

- Two-pseudoscalar-meson exchange diagrams (V^{TBEP}_{NLO})
- BB contact terms with two derivatives (V⁽²⁾)

$$\begin{array}{lll} V^{(2)} &=& C_1 \vec{q}^2 + C_2 \vec{k}^2 + (C_3 \vec{q}^2 + C_4 \vec{k}^2) (\sigma_1 \cdot \sigma_2) \\ &+& i C_5 (\sigma_1 + \sigma_2) \cdot (\vec{q} \times \vec{k}) + C_6 (\vec{q} \cdot \sigma_1) (\vec{q} \cdot \sigma_2) + C_7 (\vec{k} \cdot \sigma_1) (\vec{k} \cdot \sigma_2) \\ &+& i C_8 (\sigma_1 - \sigma_2) \cdot (\vec{q} \times \vec{k}) \end{array}$$

$$V_{NLO} = V^{(2)} + V_{NLO}^{TBEP}$$

 $ec{q} = ec{p}' - ec{p}; \;\; ec{k} = (ec{p}' + ec{p})/2$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

SU(3) symmetry

	Channel	I	V _{1S0} , V _{3P0,3P1,3P2}	$V_{3S1}, V_{3S1-3D1}, V_{1P1}$	<i>V</i> _{1<i>P</i>1-3<i>P</i>1}
<i>S</i> = 0	$NN \rightarrow NN$	1	C ²⁷	C ^{10*}	-
S = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10} \left(9C^{27} + C^{8_s}\right)$	$\frac{1}{2}\left(C^{8_a}+C^{10^*}\right)$	$\frac{-1}{\sqrt{20}}C^{8_{s}8_{a}}$
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$rac{3}{10}\left(-C^{27}+C^{8s} ight)$	$\frac{1}{2}\left(-C^{8a}+C^{10^*}\right)$	$\frac{3}{\sqrt{20}}C^{8_{s}8_{a}}$
					$\frac{-1}{\sqrt{20}}C^{8_{s}8_{a}}$
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10} \left(C^{27} + 9C^{8_s} \right)$	$\frac{1}{2}\left(C^{8a}+C^{10^*} ight)$	$\frac{3}{\sqrt{20}}C^{8_s8_a}$
	$\Sigma N \rightarrow \Sigma N$	<u>3</u> 2	C ²⁷	C ¹⁰	-

イロン イ団ン イヨン イヨン

æ.

Number of contact terms

	l	_0	NLO		
	NN	YN	NN	YN	
${}^{1}S_{0}$	1	1 + 1	1	1 + 1	
³ P ₀	0	0	1	1 + <mark>1</mark>	
³ P ₁	0	0	1	1 + <mark>1</mark>	
³ P ₂	0	0	1	1 + <mark>1</mark>	
³ S ₁	1	1 + <mark>2</mark>	1	1 + <mark>2</mark>	
${}^{3}S_{1} - {}^{3}D_{1}$	0	0	1	1 + <mark>2</mark>	
${}^{1}P_{1}$	0	0	1	1 + <mark>2</mark>	
$^{1}P_{1} - {}^{3}P_{1}$	0	0	0	1	
Σ	2	2 + <mark>3</mark>	7	7 + <mark>11</mark>	

イロン イ団ン イヨン イヨン

₹ 9Q@

Preliminary (incomplete) NLO results

- Additional contact terms in S-waves are taken into account
- Contact terms in P-waves are not yet included
- Two-pseudoscalar-meson exchange diagrams are missing
- no SU(3) constraints from the NN sector are imposed (SU(3) symmetry is used to relate ΛN and ΣN !)
- leading order SU(3) breaking in the one-boson exchange diagrams (coupling constants) is ignored
 - \Rightarrow S. Kazmierowski, diploma thesis

・ 同 ト ・ ヨ ト ・ ヨ ト

N integrated cross sections (preliminary)

Johann Haidenbauer

Baryon-baryon interactions

N integrated cross sections (preliminary)

Johann Haidenbauer

Baryon-baryon interactions

N differential cross sections (preliminary)

Johann Haidenbauer

Baryon-baryon interactions

N scattering lengths [fm] (preliminary)

		EFT	NLO		EFT LO	NSC97f	experiment
∧ [MeV]	550	600	650	700	550		
$a_s^{\wedge p}$	-2.61	-2.61	-2.59	-2.63	-1.90	-2.51	$-1.8^{+2.3}_{-4.2}$
$a_t^{\Lambda p}$	-1.64	1.63	-1.62	-1.63	-1.22	-1.75	$-1.6^{+1.1}_{-0.8}$
a _s ^{Σ+p}	-4.13	-4.11	-3.99	-3.97	-2.24	-4.35	
$a_t^{\Sigma^+ p}$	-0.01	0.01	0.01	0.01	0.70	-0.25	
χ ²	16.8	16.7	16.5	16.9	29.6	16.7	
(³ _A H) <i>E</i> _B	-2.34	-2.34	-2.39	-2.38	-2.35	-2.30	-2.354(50)

<ロト < 回 > < 回 > < 回 > 、

æ

 $YN, YY, \Xi Y, \Xi \Xi$ interactions based on EFT

- approach is based on a modified Weinberg power counting, analogous to the NN case
- LO potential (contact terms, one-pseudoscalar-meson exchange) is derived imposing SU(3)_f constraints
- Good description of the empirical YN data was achieved (with only 5 free parameters!)
- Results compatible with the sparse empirical information on the YY interaction
 (1 free parameter)
- Preliminary (incomplete) YN results in next-to-leading order (NLO) look very promising

イロト 不得 とくき とくきとう

Next tasks:

- A combined study of the *NN* and *YN* systems in chiral EFT, based on a complete NLO calculation
- A more thorough exploration of the interrelation between the elementary *YN* interaction and the properties of light hypernuclei
 - calculate the YNNN bound states
 - consider YNN three-body forces

イロト イポト イヨト イヨト