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 Examples of few-body study of 
 light nuclei based on precise NN forces 



 A. Nogga, et al., nucl-th/0112026
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 Examples of few-body study of 
 light nuclei based on precise NN forces 



 Study of hyperon-nucleon (YN) and 
hyperon-hyperon (YY) interactions is one of the 
important subjects in the nuclear physics. 

 Structure of the neutron-star core, 
Hyperon mixing, softning of EOS, inevitable strong repulsive force,  

 H-dibaryon problem, 
To be, or not to be, 

 The project at J-PARC:
 Explore the multistrange world, 

 However, the phenomenological description of YN and 
YY interactions has large uncertainties, which is in sharp 
contrast to the nice description of phenomenological NN 
potential. 

Introduction: 



Experimental data for ΛN interaction: 
 Only total corss section. 
 No phase shift analysis is avairable.
 Spin-dependence is unclear
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  : ΛNN 3BF 

Few-body calculations of 
s-shell Λ hypernuclei 



Pioneering works from lattice QCD: 
 S. Aoki, et al., PRD71, 094504 (2005);  

- scattering length from the wave function. 
 N. Ishii, et al., PRL99, 022001 (2007); nucl-th/0611096;

NN potential from the wave function.   

Comprehensive study of baryon-baryon forces.  



Nature 445 (2007).



 Formulation  
 i) basic procedure: 
 asymptotic region 
 --> phase shift 
 ii) advanced (HAL's) pro-
cedure: interacting region 
 --> potential 



 Formulation  
 i) basic procedure: 
 asymptotic region 
 (or temporal correlation) 
 --> scattering energy 
 --> phase shift 

 Luscher, NPB354, 531 (1991). 
 Aoki, et al., PRD71, 094504 (2005). 
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 HAL formulation  
 ii) advanced procedure: 
 make better use of the lattice 
 output ! (wave function) 
 interacting region 
 --> potential 

 NOTE: 
 > Potential is not a direct experimental observable. 
 > Potential is a useful tool to give (and to reproduce)  

the physical quantities. (e.g., phase shift) 
 See next pages more detail.... 

 Ishii, Aoki, Hatsuda, 
 PRL99, 022001 (2007); 
 ibid., arXiv:0805.2462[hep-ph]. 



 HAL formulation  
 ii) advanced procedure: 
 make better use of the lattice 
 output ! (wave function) 
 interacting region 
 --> potential 

 =>  > Phase shift 
 > Nuclear many-body problems 

 Ishii, Aoki, Hatsuda, 
 PRL99, 022001 (2007); 
 ibid., arXiv:0805.2462[hep-ph]. 



 HAL formulation  
 ii) advanced procedure: 
 make better use of the lattice 
 output ! (wave function) 
 interacting region 
 --> potential 

 =>  > Phase shift 
 > Nuclear many-body problems 

 Ishii, Aoki, Hatsuda, 
 PRL99, 022001 (2007); 
 ibid., arXiv:0805.2462[hep-ph].  Ishii (HAL QCD), talk at Lattice 2009. 

 > m
π
 dependence of the phase shifts 



More accurate explanation, see, e.g., arXiv:0805.2462[hep-ph]. 

 Start from an effective Schroedinger eq for the equal-
time Bethe-Salpeter wave funciton:

 A general expression of the potential: 
 

A recipe for NY potential: 
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 The equal time BS wave function with 
angular momentum (J,M) on the lattice, 

 The  4-point N correlator on the lattice, 

wall source at t = t
0

A recipe for NΛ potential: 
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More accurate explanation, see, e.g., arXiv:0805.2462[hep-ph]. 

 Calculate the 4-point N correlator on the lattice, 

 Which has the physical meanings of, 
Create a N state and making imaginary time evolution, 

in order to have the lowest state of the N system. 

Take the amplitude (xy), which can be understood as 
a wave function of the non-relativistic quantum mechanics. 

 Obtain the effective central potential from the 
effective Schroedinger equation. 

➔

A recipe for NΛ potential: 
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 For J = 1,  comprises S-wave and D-wave,   
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 Therefore, we have 2-component Schrödinger eq. 
S-wave: 
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 Obtain the  V
C
( r ) and the  V

T
( r ) simultaneously. 

A recipe for NΛ potential: (contd.) 
 



 Numerical results:   



 Plaquette gauge action and Wilson fermion action 
 Gauge coupling =5.7 
 Volume: 323 × 48  (L  4.5 fm). 
 Lattice spacing:  a  0.14 fm. ( 1/a  1.4 GeV. )
 The lattice calculations were performed by using 

KEK Blue Gene/L supercomputer. 
 The main results are obtained with 

 
ud

 = 0.1665 (or 0.1670)  for the u and d quarks, 

and 

 
s
 = 0.1643 for s quark. 

Quenched calculation with larger 
spatial volume: 

 Meson masses: 
 m


  0.511.2(6) GeV 

 m

  0.861(2) GeV 

 m
K
  0.605.3(5) GeV 

 m
K*

  0.904(2) GeV 



 S. Aoki, et al., (PACS-CS Collaboration), 
PRD79, 034503 (2009), arXiv:0807.1661 [hep-lat]. 

 Iwasaki gauge action at =1.90 on 323 × 64 lattice 
 O(a) improved Wilson quark action 
 1/a = 2.17 GeV (a = 0.0907 fm)  

Full QCD calculations by using N
F
=2+1 

PACS-CS gauge configurations: 



 Results of NN force 



 J = 0: 
 S-wave.

 J = 1: 
 S- and D-wave. 

Results ––– wave function   

Dr 
= f r  [Y 2 r ×1 ]J =1,M

 > pΛ (m
π
 ≈ 700 MeV) 

 Ishii (HAL QCD), talk at Lattice 2009. 

 > pn; multi-valued wave function of 3D
1
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 Ishii (HAL QCD), talk at Lattice 2009. 
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 Aoki, Hatsuda, Ishii (2009). 
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 Murano and Ishii (HAL QCD), talk at Lattice 2009. 
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 Murano (HAL QCD), talk at Lattice 2009. 
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 Murano (HAL QCD), talk at Lattice 2009. 



 Ishii (HAL QCD), talk at Lattice 2009. 



 Ishii (HAL QCD), talk at Lattice 2009. 

 > pn 



 Ishii (HAL QCD), talk at Lattice 2009. 

 > pn 



 Results of N Λ force 



 N potential, from lattice QCD for the first time. 

 Strong repulsive core in spin S=0 channel. 
 Weak tensor force. 
 Spin dependence in the short distance. 

Results ––– central + tensor potential 

 > pΛ (m
π
 ≈ 700 MeV) 



 N potential, quark mass dependence. 

 Repulsive core increases. 
 Interaction range increases. 
 Need more statistics. 

Results ––– central + tensor potential 

m≈700 MeV
 

   PRELIMINARY   



 N potential, quark mass dependence. 

 Repulsive core increases. 
 Interaction range increases. 
 Need more statistics. 

Results ––– central + tensor potential 

m≈400 MeV
 

   PRELIMINARY   



 N potential, from quenched QCD. 

 Qualitatively similar results to those by full QCD. 
 Strong repulsive core in spin S=0 channel. 

(but relatively weaker than that from the full QCD)

 Spin dependence. 

 Weak tensor. 

Results ––– central + tensor potential 

m≈4651MeV m≈5141MeV
 

   PRELIMINARY   



 Attractive  scattering lenghts are obtained at 
several m

π
2     in both spin S=0 and 1. 

 Spin dependence is weak. 

Results ––– scattering length  

 

   PRELIMINARY  
 

 > pΛ 



 Results of N Ξ force 



 Compare with OPEP . 

 m

=367MeV, 

N
conf

=1283, 

t-t
0
=6. 

 m

=510MeV, 

N
conf

=1000, 

t-t
0
=7. 

Results ––– potential  
 > pΞ0 (m

π
 = 370, 510 MeV) 



The pΞ0 interaction from lattice QCD: 
 H. N., et al., PLB673, 136 (2009), 

[arXiv:0806.1094[nucl-th]].   
 The scattering lengths indicate attractive forces in both of 

 1S
0
 and 3S

1
 channels.      > pΞ0 



The pΞ0 interaction from lattice QCD: 
 H. N., et al., PLB673, 136 (2009), 

[arXiv:0806.1094[nucl-th]].   
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 1S
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 The lattice QCD studies for baryon-baryon interactions. 
 NN:

 Central, tensor, energy dependence. (full and quenched QCD) 

 YN:
 p0: 

Effective central. (quenched QCD)

 p: 
Central, tensor. (full and quenched QCD)

 Qualitatively similar to well-known nuclear forces. 
 Repulsive at short distance. 

 Attractive well at medium to long distance. 

 Quark mass dependence. 
 Scattering lengths. 

Summary: 



 Provide the lattice potential, to study the hypernuclei. 

 Search for better functional form. 
 Compare the meson theory. 
 Coupled-channel would be important. 

Future prospects ––– hypernuclei 

 > pΛ 



 Provide the lattice potential, to study the hypernuclei. 

 Search for better functional form. 
 Compare the meson theory. 
 Coupled-channel would be important. 

Future prospects ––– hypernuclei  

 > pΛ 



 > potentials at flavor SU(3) limit 

 Inoue (HAL QCD), talk at Lattice 2009. 



 > potentials at flavor SU(3) limit 

 Inoue (HAL QCD), talk at Lattice 2009. 



 Ikeda (HAL QCD), talk at FewBody19. 

 > meson-baryon potential due to HAL 


