Status of our understanding of the YN/YY-interactions Meson-exchange viewpoint HYP-X@JPARC, 16 September 2009 Tokai, Ibaraki, Japan, 2009 Th.A. Rijken, M.M. Nagels, Y. Yamamoto IMAPP, University of Nijmegen Tsuru University, Tsuru

University of Nijmegen, September 2009

Particle and Nuclear Flavor Physics H.Bando

Particle and Flavor Nuclear Physics

- Objectives in Low/Intermediate Energy Physics:
 - 1. Study links Hadron-interactions and Quark-physics (QCD, QPC)
 - 2. Construction realistic physical picture of nuclear forces between the octet-baryons: N, Λ, Σ, Ξ
 - 3. Study (broken) $SU_F(3)$ -symmetry
 - 4. Determination Meson Coupling Parameters \leftarrow NN+YN Scattering
 - 5. Analysis and interpretation experimental scattering data, and (hyper) nuclei-data
 - 6. Basis nuclear-model and nuclear-matter studies
 - 7. CERN, BNL, KEK, TJNAL, FINUDA, JPARC(2008), FAIR
 - 8. Extension to nuclear systems with c-, b-, t-quarks.

1a Baryon-baryon Channels S = 0, -1, -2

BB: The baryon-baryon channels S = 0, -1, -2

Th.A. Rijken

University of Nijmegen

HYP-X: Status YN-interactions

-p.3/69

1 SU(3)-Symmetry Hadronen, BB-channels

Baryon-Baryon Interactions: SU(3)-Flavor Symmetry

- Quark Level: SU(3)_{flavor} ⇔ Quark Substitutional Symmetry (!!)]
 'quarks are color blind'
- $p \sim UUD$, $n \sim UDD$, $\Lambda \sim UDS$, $\Sigma^+ \sim UUS$, $\Xi^0 \sim USS$
- Mass differences \Leftrightarrow Broken SU(3)_{flavor} symmetry
- Baryon-Baryon Channels:

• SU(3) classification BB-channels:

 $\{8\} \otimes \{8\} = \{27\} \oplus \{10\} \oplus \{10^{\star}\} \oplus \{8_s\} \oplus \{8_a\} \oplus \{1\}$

SU(3)-Symmetry Hadronen, BB-decuplet II

2 Introduction: Competing BB-models

Theory Interest in Flavor Nuclear Physics

- Recent Model building:
 - Nijmegen models: OBE and ESC Soft-core (SC) Rijken, Phys.Rev. C73, 044007 (2006) Rijken & Yamamoto, Phys.Rev. C73, 044008 (2006)
 - 2. Chiral-Unitary Approach model Sasaki, Oset, and Vacas, Phys.Rev. C74, 064002 (2006)
 - 3. Jülich Meson-exchange models Haidenbauer, Meissner, Phys.Rev. C72, 044005 (2005)
 - 4. Bochum/Jülich Effective Field Theory models Epelbaum, Polinder, Haidenbauer, Meissner
 - 5. Quark-Cluster-models: QGE + RGM Fujiwara et al, Progress in Part. & Nucl.Phys. 58, 439 (2007) Valcarce et al, Rep.Progr.Phys. 68, 965 (2005)
 - 6. Lattice Computations: Nemura,

BROID BB-interaction Models

Particle and Flavor Nuclear Physics (H.Bando)

4a QCD-world I

QCD-world I: mesons and baryons

4b QCD-world II

QCD-world II: Baryon/Meson-baryon Interactions

4c Gluon-Quark-Exchange

$Gluon-Quark-Exchange \Leftrightarrow Meson-Exchange$

• Strong-coupling regime QQ-interaction: Multi-gluon exchange

4 Quark-Pair-Creation in QCD

Quark-Pair-Creation in QCD \Leftrightarrow Flux-tube breaking

• Strong-coupling regime QQ-interaction: Multi-gluon exchange

4e Gluon-exchange ⇔ Pomeron

Multiple Gluon-exchange QCD \Leftrightarrow Pomeron/Odderon

• Gluon-exchange \Leftrightarrow Pomeron-exchange

- Two/Even-gluon exchange ⇔ Pomeron
- Three/Odd-gluon exchange \Leftrightarrow Odderon

Multiple-gluon model: Low PR D12(19 Nussinov PRL34(1975) Scalar Gluon-condensate: ITEP-school $\langle 0|g^2 G^a_{\mu\nu}(0)G^{a\mu\nu}(0)|0\rangle = \Lambda^4_c$, $\Lambda_c \approx 800$ MeV Landshoff, Nachtmann, Donnachie, Z.Phys.C35(1987); NP B311(1988): $\langle 0|g^2 T[G^a_{\mu\nu}(x)G^{a\mu\nu}(0)]|0\rangle =$ $\Lambda^4_c f(x^2/a^2), a \approx 0.2 - 0.3 fm$ QCD-vacuuum: Copenhagen picture, Ambjorn & Olesen, NP B170(1980)

5a Six-Quark-core Effects

Six-Quark-Core Effect: Forbidden States

- Irreps [51], [33] of $SU(6)_{fs}$ and the Pauli-principle
- $SU(3)_f$ -irreps $\{27\}, \{10^*\}$, etc. in terms of the $SU(6)_{fs}$ -irreps:

$$V_{\{27\}} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]} ,$$

$$V_{\{10^*\}} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]} ,$$

$$V_{\{10\}} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]} ,$$

$$V_{\{8_a\}} = \frac{5}{9}V_{[51]} + \frac{4}{9}V_{[33]} ,$$

$$V_{\{8_s\}} = V_{[51]} , V_{\{1\}} = V_{[33]} .$$

Forbidden irrep [51] has large weight in $\{10\}$ and $\{8_s\}$ -> Adaption Pomeron strength for these irreps.

- Pomeron \Leftrightarrow Multi-gluon Exch. + Quark-core effect !
- Literature: P.T.P. Suppl. 137 (2000), Oka et al

5 Short-range Phenomenology-6

Corollary:

We have seen that the [51]-irrep has a large weight in the $\{10\}$ - and $\{8_s\}$ -irrep, which gives an argument for the presence of a strong Pauli-repulsion in these $SU(3)_f$ -irreps \Longrightarrow

ESC08: implementation by adapting the Pomeron strength in irreps $\{10\}$ and $\{8_s\}$.

From the plots of the potentials for the NSC97f model (RSY99) one sees that the shapes of the potentials in the irreps $\{10\}$ and $\{8$ are similar, and moreover are attractive at short range. Such similarity is expected from QCM and apparently is related to $SU(6)_{fs}$ -symmetry. This is also the case for the short range shape of the irreps $\{27\}$ and $\{10^*\}$, as seen in the figures.

7a YN X-sections

7b YN X-sections

- p.16/69

8 Spin-correlation parameters II

Spin-correlation parameters $A_{yy}, A_{xx}, A_{zx}, A_{xz}$, and A_{zz} .

Spin-correlation parameters A_{yy} , A_{xx} , A_{zx} , A_{xz} , and A_{zz} .

8d PWA-93, 1

Th.A. Rijken

University of Nijmegen

HYP-X: Status YN-interactions

- p.18/69

Th.A. Rijken

University of Nijmegen

HYP-X: Status YN-interactions

- p.19/69

8 FWA-93, 3

Th.A. Rijken

University of Nijmegen

HYP-X: Status YN-interactions

- p.20/69

Methodology ESC08-model Analysis

Strategy: Combined Analysis NN-, YN-, and YY-data

Input data/constraints:

- NN-data : 4300 scattering data + low-energy par's
- YN-data : 38 scattering data
- Nuclei/hyper-nuclei data: BE's Deuteron, well-depth's $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$
- Hadron physics: experiments + theory

a) Flavor SU(3), (b) Quark-model, (c) QCD \leftrightarrow gluon dynamics Output: ESC-models (ESC04,ESC06,ESC08), ESC08b:

- Fit NN-data $\chi^2_{p.d.p.}$ =1.135 (!), deuteron, YN-data $\chi^2_{p.d.p.} = 0.60$
- Description all well-depth's, NO S=-1 bound-states (!), small Λp spin-orbit (Tamu $\Delta B_{\Lambda\Lambda}$ a la Nagara (!)

<u>Predictions</u>: (a) Deuteron D(Y = 0)-state in $\Xi N(I = 1, {}^{3}S_{1})$ (!??), (b) (Y=-2)-bound-state $\Xi \Xi (I = 1, {}^{1}S_{0})$ (!??)

• Predictions model-dependent: Need more precise e.g. $\Sigma^+ p-$, $\Lambda p-$, $\Xi N-$ info!!!

10 ESC-model: OBE+TME

BB-interactions in the ESC-model:

One-Boson-Exchanges:

1	pseudo-scalar	π	K	η	
	vector	ho	K^*	ϕ	
	axial-vector	a_1	K_1	f_1'	
	scalar	δ	κ	S^*	
	diffractive	A_2	K^{**}	f	

Two-Meson-Exchanges:

10c ESC-model: Meson-Pair exchanges

BB-interactions in the ESC-model (cont.):

Meson-Pair-Exchanges:

- $PP\hat{S}_{\{1\}}$: $\pi\pi, \ K\bar{K}, \ \eta\eta$
- $PP\hat{S}_{\{8\}_s}$: $\pi\eta, \ K\bar{K}, \ \pi\pi, \ \eta\eta$
- $PP\hat{V}_{\{8\}_a}$: $\pi\pi, \ K\bar{K}, \ \pi K, \ \eta K$
- $PV\hat{A}_{\{8\}_a}$: $\pi\rho, \ KK^*, \ K\rho, \ \ldots$

-p.23/69

 $PV\hat{B}_{\{8\}}$: $\pi\omega, \ K\omega, \ \eta\omega$

10a ESC-model, dynamical contents

ESC08b: Soft-core NN + YN + YY **ESC-model**

- extended ESC04-model, PRC73 (2006)
- NN: 20 free parameters: couplings, cut-off's, meson mixing and F/(F+D)-ratio's
- meson nonets:

 $J^{PC} = 0^{-+}; \quad \pi, \eta, \eta', K \; ; = 1^{--}; \quad \rho, \omega, \phi, K^* \\ = 0^{++}; \quad a_0(962), f_0(760), f_0(993), \kappa_1(900)$

- $= 1^{++}: a_1(1270), f_1(1285), f_0(1460), K_a(1430)$
- $= 1^{+-}$: $b_1(1235), h_1(1170), h_1(1380), K_b(1430)$
- soft TPS: two-pseudo-scalar exchanges,
- soft MPE: meson-pair exchanges: $\pi \otimes \pi$, $\pi \otimes \rho$, $\pi \otimes \epsilon$, $\pi \otimes \omega$, etc.
- pomeron/odderon exchange

 multi-gluon / pion exchange
- quark-core effects,
- \bullet gaussian form factors, $exp(-{\bf k}^2/2\Lambda_{B'BM}^2)$
- Simultaneous NN+YN Data (constrained) fit, 4301 NN-data, 38 YN-data:
- 1. Nucleon-nucleon: pp + np, $\chi^2_{dpt} = 1.135(!)$

2. Hyperon-nucleon:
$$\Lambda p + \Sigma^{\pm} p$$
, $\chi^2_{dpt} = 0.63$

10d ESC-model: Computational Methods

Computational Methods

• coupled channel systems:

$$\begin{array}{lll} NN & pp \to pp, \, \text{and} \, np \to np \\ YN & \text{a.} & \Lambda p \to \Lambda p, \Sigma^0 p, \Sigma^+ n \\ & \text{b.} & \Sigma^- p \to \Sigma^- p, \Sigma^0 n, \Lambda n \\ & \text{c.} & \Sigma^+ p \to \Sigma^+ p \\ YY & \Lambda \Lambda \to \Lambda \Lambda, \Xi N, \Sigma \Sigma \end{array}$$

• potential forms:

$$V(r) = \left\{ V_C + V_\sigma \ \underline{\sigma}_1 \cdot \underline{\sigma}_2 + V_T \ S_{12} + V_{SO} \ \underline{L} \cdot \underline{S} + V_{ASO} \ \frac{1}{2} (\underline{\sigma}_1 - \underline{\sigma}_2) \cdot \underline{L} + V_Q \ Q_{12} \right\} P$$

• multi-channel Schrödinger equation: $H\Psi = E\Psi$

$$H = -\frac{1}{2m_{red}}\underline{\nabla}^2 + V(r) - \left(\underline{\nabla}^2\frac{\phi}{2m_{red}} + \frac{\phi}{2m_{red}}\underline{\nabla}^2\right) + M$$

HYP-X: Status YN-interactions

10 • ESC08-model: coupling constants etc.

YN + YY ESC-model 2008/09: ESC08b

• Notice: simultaneous NN + YN fit, $\chi^2_{p.d.p.}(NN) = 1.135$ (!) Coupling constants, F/(F + D)-ratio's, mixing angles

mesons		{1}	{8}	F/(F+D)
pseudoscalar	f	0.166	0.265	$\alpha_{PV} = 0.43$
vector	g	3.242	0.778	$\alpha_V^e = 1.0$
	f	-2.745	3.933	$\alpha_V^m = 0.54$
scalar	g	4.174	1.101	$\alpha_S = 0.75$
axial	g	0.707	1.188	$\alpha_A = 0.02$
	f	0.256	-0.189	
pomeron	g	3.335	0.000	$\alpha_D =$

 $\Lambda_P = 872.1 \text{ MeV}, \qquad \Lambda_V = 707.6, \qquad \Lambda_S = 1193.3$ $\Lambda_P = 893.7, \qquad \Lambda_V = 1116.5 \qquad \Lambda_S = 1146.0, \qquad \Lambda_A = 1254.8$ $\theta_P = -23.00^{o \star}, \quad \theta_V = 37.50^{0 \star}, \quad \theta_A = -40.46^{0 \star}, \quad \theta_S = 37.50^{o \star}$ $a_{PV} = 1.0$ (!) Scalar mesons: zero in FF (!)

• Odderon: $g_O = 0.946, f_O = -1.161, m_O = 454.6$ MeV, FI51=1+1.15

11a ESC08b(NN+YN), details NN-fit

χ^2 -distribution PSA93 and ESC08b-model

T_{lab}	#data	χ^2_0	$\Delta\chi^2$	$\hat{\chi}_0^2$	$\Delta \hat{\chi}^2$
0.383	144	137.55	31.2	0.960	0.216
1	68	38.02	36.6	0.560	0.539
5	103	82.23	11.2	0.800	0.108
10	209	257.99	25.9	1.234	0.089
25	352	272.20	39.3	0.773	0.112
50	572	547.67	122.8	0.957	0.215
100	399	382.45	25.6	0.959	0.064
150	676	673.05	128.8	0.996	0.191
215	756	754.52	114.4	0.998	0.151
320	954	945.38	271.0	0.991	0.284
Total	4233	4091.12	806.9	0.948	0.187

- p.27/69

• $\chi^2_{2}: \chi^2_{2}$ PSA93, $\chi^2_{2}: \chi^2_{2}$ PSA93, Th.A. Rijken University of Nijmegen' HYP-X: Status YN-interactions • The χ^2 -access ESC08b(NN+YN)-model is denoted

1 b ESC08, NN Low-energy parameters

Low energy parameters ESC08b(NN+YN)-model

	Experimental data	ESC08b
$a_{pp}(^1S_0)$	-7.823 ± 0.010	-7.772
$r_{pp}(^1S_0)$	$\textbf{2.794} \pm \textbf{0.015}$	2.751
$a_{np}(^1S_0)$	-23.715 ± 0.015	-23.739
$r_{np}(^1S_0)$	2.760 ± 0.015	2.694
$a_{nn}(^1S_0)$	$\textbf{-18.70}\pm0.60$	-14.91
$r_{nn}(^1S_0)$	$\textbf{2.75} \pm \textbf{0.11}$	2.89
$a_{np}(^{3}S_{1})$	5.423 ± 0.005	5.423
$r_{np}(^{3}S_{1})$	1.761 ± 0.005	1.754
E_B	$\textbf{-2.224644} \pm \textbf{0.000046}$	-2.224678
Q_E	0.286 ± 0.002	0.269

• Units: [a]=[r]=[fm], $[E_B]$ =[MeV], $[Q_E]$ =[fm]².

11c PWA-93 and ESC, 1

- p.29/69

11d PWA-93 and ESC, 2

1 • Nuclear Matter, Saturation

ESC04(NN): Binding Energy per Nucleon B/A

12a QPC: ${}^{3}P_{0}$ -model

Meson-Baryon Couplings from ${}^{3}P_{0}$ -Mechanism

- 1. $g_{\epsilon} = g_{\omega}$, and $g_{a_0} = g_{\rho}$!? 2. What about f_{π} , g_{a_1} , etc. ?
- **3.** $g_{q,ij}^V = g_{q,ij}^S = -g_{q,ij}^A = g_{q,ij}^P$

12b QPC: 3S_1 -model

Meson-Baryon Couplings from ${}^{3}S_{1}$ -Mechanism

 ${}^{3}S_{1}$ Interaction Lagrangian: $\mathcal{L}_{I}^{(V)} = \gamma \left(\sum_{j} \bar{q}_{j} \gamma_{\mu} q_{j} \right) \cdot \left(\sum_{i} \bar{q}_{i} \gamma^{\mu} q_{i} \right)$ **Fierz Transformation** $\mathcal{L}_{I}^{(V)} = -\frac{\gamma}{4} \sum_{i,i} \left[+ 4\bar{q}_{i} q_{j} \cdot \bar{q}_{j} q_{i} - 2\bar{q}_{i}\gamma_{\mu}q_{j} \cdot \bar{q}_{j}\gamma^{\mu}q_{i} \right]$ $-2\bar{q}_i\gamma_{\mu}\gamma_5 q_j \cdot \bar{q}_j\gamma^{\mu}\gamma^5 q_i - 4\bar{q}_i\gamma_5 q_j \cdot \bar{q}_j\gamma^5 q_i \bigg|$ $\mathcal{L}_I = a\mathcal{L}_I^{(S)} + b\mathcal{L}_I^{(V)}$ $ESC08b: b/a \approx 1/6$ 1. $g_{\epsilon,a_0} \sim (a-4b), \ g_{\omega,\rho} \sim (a-2b)$!? 2. $g_{A_1,E_1} \sim -(a+2b), \ g_{\pi,\eta} \sim (a-4b)$!?

3. But: $\pi - A_1$ -mixing -> Complicated sector!

12d QPC: ${}^{3}P_{0}$ -model and ESC04/ESC08

ESC04/08 Couplings and ${}^{3}P_{0}$ -Model Relations

Meson	$r_M[fm]$	X_M	γ_M	${}^{3}P_{0}$	ESC04	ESC08
$\pi(140)$	0.66	5/6	4.84	f = 0.26	0.26	0.27
ho(770)	0.66	1	2.19	g = 0.93	0.78	0.78
$\omega(783)$	0.66	3	2.19	g = 2.86	3.08	3.39
$a_0(962)$	0.66	1	2.19	g = 0.93	0.82	1.10
$\epsilon(760)$	0.86	3	2.19	g = 2.85	3.22	4.09
$a_1(1270)$	0.66	$5\sqrt{2}/6$	2.19	g = 2.51	2.43	1.19
. ,		·				

• QPC: ³P₀-model relations: "bare"couplings (!)

 $g_{\omega} = 3g_{\rho}, \qquad g_{\epsilon} = 3g_{a_0}, \qquad \qquad \varepsilon_0(\lambda) \sim \bar{q}q({}^3P_0) \\ g_{a_0} \approx g_{\rho}, \qquad g_{\epsilon} \approx g_{\omega} \qquad \qquad \varepsilon_a(\lambda) \sim \bar{q}q({}^3S_1)$ $f_{NNa_1} \approx \frac{m_{a_1}}{m_{\pi}} f_{NN\pi}$ (CS, Schwinger67)

12 HBS and ESC04/ESC08 Pair-couplings

ESC04/08 Pair-couplings with HBS and QPC

₹PC				500041		
$J^{I \cup}$	Coupling	HBS	HBS	ESC04d	ESC08b	F'/(F'+D)
0^{++}	$g_{(\pi\pi)_0}$	-0.03	$f_0(760, 993), P$	0.00	0.00	—
	$g_{(\pi\eta)_1}$	-0.28	$a_0(980, 1450)$	-0.10	-0.02	1.00
$1^{}$	$g_{(\pi\pi)_1}$	0.04	ho(760)	0.03	0.00	1.00
	$f_{(\pi\pi)_1}$	0.16	ho(760)	0.14	-0.24	0.40
1^{++}	$g_{(\pi ho)_1}$	0.42	$A_1(1270)$	0.83	0.62	-0.28
	$g_{(\pi\sigma)_1}$	0.31	$A_1(1270)$	-0.04	-0.03	-0.28
1^{+-}	$g_{(\pi\omega)_1}$	-0.16	$B_1(1235)$	-0.17	-0.07	0.43

• Heavy-boson-saturation (HBS) comparison Pair-couplings and F/(F + D)-ratio's:

13a ESC-model: extension to YN

SU(3)-Extension ESC to Hyperon-Nucleon

• MPE: Boson-dominance model:

$$g_{Y'Y(\rho\pi)_{1}} = \hat{g}_{Y'YA_{1}}g_{A_{1}\rho\pi} \cdot \left(m_{\pi}^{2}/m_{A_{1}}^{2}\right), \text{ e.g.}$$

$$g_{\Sigma\Lambda(\rho\pi)_{1}} = \hat{g}_{\Sigma\Lambda A_{1}}g_{A_{1}\rho\pi} \left(m_{\pi}^{2}/m_{A_{1}}^{2}\right)$$

$$= (\hat{g}_{\Sigma\Lambda A_{1}}/\hat{g}_{NNA_{1}}) g_{NN(\rho\pi)_{1}}$$

$$= \frac{2}{\sqrt{3}}(1 - \alpha_{A})g_{NN(\rho\pi)_{1}}$$

-p.36/69

13b Short-range Phenomenology-3

$SU(6)_{j}$	$SU(6)_{fs}$ -contents of the various potentials on the isospin,spin basis.							
	(S, I)	$V = aV_{[51]} + bV_{[33]}$						
$NN \rightarrow NN$	(0,1)	$V_{NN}(I=1) = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$						
$NN \rightarrow NN$	(1, 0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$						
$\Lambda N \to \Lambda N$	(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$						
$\Lambda N \to \Lambda N$	(1, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$						
$\Sigma N \to \Sigma N$	(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$						
$\Sigma N \to \Sigma N$	(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$						
$\Sigma N \to \Sigma N$	(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$						
$\Sigma N \to \Sigma N$	(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$						

14a ESC08-model: Σ^+P -phases

ESC08b nuclear-bar $\Sigma^+ p$ phases in degrees:

p_{Σ^+}	200	400	600	800	1000
$T_{\rm lab}$	16.7	65.5	142.8	244.0	364.5
${}^{1}S_{0}$	29.65	18.03	2.20	-12.59	-25.82
${}^{3}S_{1}$	-15.34	-31.84	-47.42	-59.89	-68.06
ϵ_1	-2.05	-5.69	-8.09	-9.64	-10.93
${}^{3}P_{0}$	6.54	15.76	15.32	12.49	11.55
${}^{1}P_{1}$	2.25	5.41	4.13	-0.03	-4.04
$ ho_1$	0.00	0.00	0.00	0.00	0.00
${}^{3}P_{1}$	-3.20	-9.80	-16.93	-24.24	-30.64
${}^{3}P_{2}$	1.63	10.54	23.85	35.40	41.07
ϵ_2	-0.41	-2.09	-2.99	-2.41	-1.33
${}^{3}D_{1}$	0.34	1.70	1.52	-1.94	-8.03
${}^{1}D_{2}$	0.34	2.23	5.40	8.14	8.77
$^{3}D_{2}$	-0.49	-2.68	-5.69	-10.03	-15.73
$^{3}D_{3}$	0.05	0.59	0.82	-0.94	-4.69
University	y of Nijmege	en	HYP-X: Sta	tus YN-inter	ractions

Th.A. Rijken

- p.38/69

ESC08b: Left-Right asymmetry $\Sigma^+ P$

Left-Right Asymmetry Polarized-beam Scattering (e.g. $\Lambda, \Sigma^+ p$)

Th.A. Rijken

ESC08b: Left-Right asymmetry $\Sigma^+ P$

• Data: Nakai et al

ESC08b: Left-Right asymmetry $\Lambda^+ P$

• Data: Nakai et al

14b ESC08-model: ΛP -phases

ESC08b nuclear-bar Λp phases in degrees:

633.4 167.3
167.3
167.3
5.20
47.59
30.36
1
16.74

Th.A. Rijken University of Nijmegen HYP-X: Status YN-interactions -p.42/69 • $a_s = -2.56 \text{fm}$, $r_s = 3.14 \text{fm}$

ESC08-model: YN-results I

ESC08b YN+YY Fitting results (I):

Λp -	$ ightarrow \Lambda p$:						$\chi^2 = 4.94$
1	$p_{\Lambda}=$ 135	180.0	\pm	22.0	THEORY=	211.5	$\chi^2=$ 2.05
2	$p_{\Lambda}=$ 145	130.0	\pm	17.0	THEORY=	146.8	$\chi^2=$ 0.97
3	$p_{\Lambda}=$ 165	118.0	\pm	16.0	THEORY=	114.7	$\chi^2=$ 0.01
4	$p_{\Lambda}=$ 185	101.0	\pm	12.0	THEORY=	97.3	$\chi^2=$ 0.10
5	$p_\Lambda=$ 195	83.0	\pm	9.0	THEORY=	81.2	$\chi^2=$ 0.04
6	$p_{\Lambda}=$ 210	57.0	\pm	9.0	THEORY=	57.2	$\chi^2=$ 0.00
7	$p_{\Lambda} =$ 225	209.0	\pm	58.0	THEORY=	231.4	$\chi^2 = 0.15$
8	$p_{\Lambda}=$ 230	177.0	\pm	38.0	THEORY=	176.3	$\chi^2=$ 0.00
9	$p_{\Lambda}=$ 250	153.0	\pm	27.0	THEORY=	133.9	$\chi^2=$ 0.50
10	$p_{\Lambda}=$ 255	111.0	\pm	18.0	THEORY=	101.8	$\chi^2=$ 0.26
11	$p_{\Lambda}=$ 290	87.0	\pm	13.0	THEORY=	77.7	$\chi^2=$ 0.51
12	$p_{\Lambda}=$ 300	46.0	\pm	11.0	THEORY=	52.5	$\chi^2=$ 0.35

ESC08-model: YN-results II

ESC08b YN+YY Fitting results (II):

$\overline{\Sigma^{-}}p$	$p \to \Sigma^- p$:						$\chi^2 = 4.73$
13	$p_{\Sigma^-}=$ 142.5	152.0	\pm	38.0	THEORY=	134.6	$\chi^{2} = 0.21$
14	$p_{\Sigma^-}=$ 147.5	146.0	\pm	30.0	THEORY=	128.9	$\chi^2=$ 0.33
15	$p_{\Sigma^-}=$ 152.5	142.0	\pm	25.0	THEORY=	123.6	$\chi^2 = 0.54$
16	$p_{\Sigma^-}=$ 157.5	164.0	\pm	32.0	THEORY=	118.7	$\chi^{2} = 2.01$
17	$p_{\Sigma^-}=$ 162.5	138.0	\pm	19.0	THEORY=	114.0	$\chi^{2} = 1.60$
18	$p_{\Sigma^-}=$ 167.5	113.0	\pm	16.0	THEORY=	109.6	$\chi^{2} = 0.04$
$\Sigma^{-}p$	$p \to \Sigma^0 n$:						$\chi^2 = 5.78$
19	$p_{\Sigma^-}=$ 110	396.0	\pm	91.0	THEORY=	193.4	$\chi^{2} =$ 4.96
20	$p_{\Sigma^-}=$ 120	159.0	\pm	43.0	THEORY=	171.9	$\chi^2=$ 0.09
21	$p_{\Sigma^-}=$ 130	157.0	\pm	34.0	THEORY=	152.3	$\chi^{2} = 0.02$
22	$p_{\Sigma^-}=$ 140	125.0	\pm	25.0	THEORY=	136.8	$\chi^2 = 0.22$
23	$p_{\Sigma^-}=$ 150	111.0	\pm	19.0	THEORY=	124.1	$\chi^2 = 0.48$
24	$p_{\Sigma^-}=$ 160	115.0	\pm	16.0	THEORY=	113.5	$\chi^{2} = 0.01$

14c ESC08-model, YN-results III

ESC08b YN+YY Fitting results (III):

$\Sigma^{-}p$	$\chi^2 =$ 4.55				
25	$p_{\Sigma^-}=$ 142.5	174.0 ± 47.0	THEORY=	238.4	$\chi^2=$ 1.88
26	$p_{\Sigma^-}=$ 142.5	178.0 ± 39.0	THEORY=	203.8	$\chi^2=$ 0.44
27	$p_{\Sigma^-}=$ 142.5	140.0 ± 28.0	THEORY=	176.1	$\chi^2=$ 1.66
28	$p_{\Sigma^-}=$ 142.5	164.0 ± 25.0	THEORY=	153.8	$\chi^2=$ 0.16
29	$p_{\Sigma^-}=$ 142.5	147.0 ± 19.0	THEORY=	135.7	$\chi^2=$ 0.35
30	$p_{\Sigma^-}=$ 142.5	124.0 ± 14.0	THEORY=	120.7	$\chi^2=$ 0.06

Capture ratio at rest: r_C :

	31	$\textbf{0.468} \pm \textbf{0.010}$	THEORY=	0.466	$\chi^2 = 0.06$
--	----	-------------------------------------	---------	-------	-----------------

14d ESC08-model, YN-results IV

ESC08b YN+YY Fitting results (IV):

$\Sigma^+ p$							$\chi^2 = 4.04$
32	$p_{\Sigma^+}=$ 145	123.0	\pm	62.0	THEORY=	112.2	$\chi^2=$ 0.03
33	$p_{\Sigma^+}=$ 155	104.0	\pm	30.0	THEORY=	105.7	$\chi^2 = 0.00$
34	$p_{\Sigma^+}=$ 165	92.0	\pm	18.0	THEORY=	100.0	$\chi^2=$ 0.20
35	$p_{\Sigma^+}=$ 175	81.0	\pm	12.0	THEORY=	94.8	$\chi^2=$ 1.32
36^{\dagger}	$p_{\Sigma^+}=$ 400	74.8	\pm	25.0	THEORY=	55.1	$\chi^2=$ 0.62
37^{\dagger}	$p_{\Sigma^+}=$ 500	26.0	\pm	20.0	THEORY=	53.4	$\chi^2=$ 1.87
38 [†]	$p_{\Sigma^+}=$ 650	51.7	±	40.0	THEORY=	51.9	$\chi^2=$ 0.00

Total 38 Scattering data:

 $\chi^2 = 24.10$

• †: Kanda et al, Nucl.Phys. 2005

14e ESC08b-model: YN-results V

ESC08b YN+YY: Pseudo-data (constraints):

Low-Energ	Low-Energy Parameters Λp :							
a_s	-1.95	\pm	0.10	THEORY=	-2.56	$\Phi^2 =$	37.3	
a_t	-1.86	\pm	0.01	THEORY=	-1.80	$\Phi^2 =$	31.7	
r_s	2.90	\pm	0.10	THEORY=	3.14	$\Phi^2 =$		
r_t	2.70	\pm	0.10	THEORY=	3.35	$\Phi^2 =$		
Low-Energ	Low-Energy Parameters $\Sigma^+ p$:							
a_t	+0.62	\pm	0.05	THEORY=	0.78	$\Phi^2 =$	10.8	
r_s		\pm	—	THEORY=	-1.33	$\Phi^2 =$		
Low-Energ	Low-Energy Parameters $\Lambda\Lambda$:							
a_s	-1.00	±	0.10	THEORY=	-0.47	$\Phi^2 =$	111.0	
r_s		\pm	—	THEORY=	8.19	$\Phi^2 =$		
Low-Energ	Low-Energy Parameters ΞN :							
$a_t(I=0)$	-6.00	\pm	0.10	THEORY=	-0.03	$\Phi^2 =$		
$a_t(I=1)$	-6.00	\pm	0.05	THEORY=	+1.99	$\Phi^2 =$		
Spin-orbit of	Spin-orbit constraint Λp :							
$K_{\Lambda}(V)$	0.00	\pm	0.10	THEORY=	1.65	$\Phi^2 =$	67.7	

15a G-matrix ESC-models

Partial wave contributions to $U_{\Lambda}(\rho_0)^{(a)}$

NSC97e	-12.7	-25.5	2.1	0.5	3.2	-1.2	-1.1	-34.7
NSC97f	-14.3	-22.4	2.4	0.5	4.0	-0.7	-1.2	-31.7
	${}^{1}S_{0}$	$^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	sum
ESC04a	-13.7	-20.5	0.6	0.2	0.5	-4.5	-1.0	-38.5
ESC04d	-13.6	-26.6	3.2	-0.2	0.9	-6.4	-1.4	-44.1
ESC08b	-12.3	-19.7	2.7	-0.2	1.5	-4.2	-1.7	-34.0
ESC08b*	-13.3	-25.1	2.5	-0.2	1.4	-4.5	-1.7	-41.0

• (a): QTQ-approximation, ESC08*: CIES-method

• private communication Y. Yamamoto

15b G-matrix ESC-models

Partial wave contributions to $U_{\Sigma}(\rho_0)$

model	Т	${}^{1}S_{0}$	$^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
NSC97f	1/2	14.9	-9.6	1.9	2.3	-4.0	0.4	-0.4	
	3/2	-12.2	-4.2	-3.8	-1.8	5.5	-2.7	-0.2	-13.9
ESC04d	1/2	6.5	-21.0	2.6	2.4	-6.7	-1.7	-0.9	
	3/2	-10.1	14.0	-8.5	-2.6	5.9	-5.7	-0.2	-26.0
ESC06d	1/2	7.2	-21.5	1.9	2.3	-6.1	-1.0	-0.8	
	3/2	-10.8	39.1	-10.6	-2.5	6.0	-4.5	-0.1	-1.2
ESC06d*	1/2	8.1	-20.5	2.1	2.3	-6.0	-1.0	-0.8	
	3/2	-10.1	43.8	-10.6	-2.2	6.3	-3.6	-0.0	+8.2
ESC08b	1/2	10.3	-26.2	2.5	2.2	-7.9	-1.7	-0.8	
	3/2	-10.6	52.7	-6.2	-2.0	7.4	0.8	-0.1	+20.3

• private communication Y. Yamamoto

VLS and VLSA Spin-orbit OBE-graphs, I

Strangeness Exchange (a,b)-graphs

Figuur 9: K,K*-exchange time-ordered graphs.

Th.A. Rijken

16a VLS and VLSA Spin-orbit OBE-graphs, II

BDI70 ALS-potentials for strange-meson-exchanges

$$(a) \oplus (b) \quad : \quad \widetilde{V}_{K}(\mathbf{q}, \mathbf{k}) = -\frac{f_{P}^{2}}{m_{\pi}^{2}} \left[\frac{1}{2\omega} \left\{ \frac{1}{\omega - a} + \frac{1}{\omega + a} \right\} \, \boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right. \\ \left. + \frac{1}{M_{\Lambda} + M_{N}} \left\{ \frac{1}{\omega - a} - \frac{1}{\omega + a} \right\} \, \left(\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{q} - \boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right) \right] \, \boldsymbol{\sigma}_{1} \\ \Rightarrow \quad \left. - \frac{f_{P}^{2}}{m_{\pi}^{2}} \left[-2\frac{M_{\Lambda} - M_{N}}{M_{\Lambda} + M_{N}} \left(\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \boldsymbol{\sigma}_{2} \cdot \mathbf{q} - \boldsymbol{\sigma}_{1} \cdot \mathbf{q} \boldsymbol{\sigma}_{2} \cdot \mathbf{k} \right) \right] \, \mathcal{P}_{f} \cdot \frac{1}{\omega^{2} - \omega^{2}} \right]$$

Notice: this result corresponds with the answer in the PS-PS theory!

$$P_8 = 2\left(\boldsymbol{\sigma}_1 \cdot \mathbf{q}\boldsymbol{\sigma}_2 \cdot \mathbf{k} - \boldsymbol{\sigma}_1 \cdot \mathbf{k}\boldsymbol{\sigma}_2 \cdot \mathbf{q}\right) , P_6 = (i/2)\left(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2\right) \cdot \mathbf{n}$$
$$= -\left(1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2\right) P_6$$

This leads to the following expression $(a = M_{\Lambda} - M_N)$

$$\widetilde{V}_{K}(\mathbf{q},\mathbf{k}) \quad \Rightarrow \quad -\frac{f_{P}^{2}}{m_{\pi}^{2}} \left[2\frac{M_{\Lambda} - M_{N}}{M_{\Lambda} + M_{N}} \cdot (i/2) \left(\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}\right) \cdot \mathbf{n} \right] \, \mathcal{P}_{x} \cdot \frac{1}{\omega^{2} - a^{2}}$$

16b VLS and VLSA Spin-orbit ESC-models, II

Strengths of Λ spin-orbit potential-integrals

$$K_{\Lambda} = K_{S,\Lambda} + K_{A,\Lambda} \text{ where}$$

$$K_{S,\Lambda} = -\frac{\pi}{3}S_{SLS} \text{ and } K_{A,\Lambda} = -\frac{\pi}{3}S_{ALS} \text{ with}$$

$$S_{SLS,ALS} = \frac{3}{q}\int_{0}^{\infty} r^{3}j_{1}(qr)V_{SLS,ALS}(r)dr.$$

	K_S	K_A	$K^{(0)}_{\Lambda}$	$K_{\Lambda}(BDI)$	$K_{\Lambda}(Pair)$	ΔE_{LS}
ESC04b	16.0	-8.7	7.3	(-2.4)	(-3.3)	
ESC04d	22.3	-6.9	15.4	(-5.0)	(-6.9)	
NILS06d	21.5	-6.1	15.4	(-5.1)	(-6.6)	
ESC07	20.9	-9.6	11.3	(-4.7)	(-5.2)	
NHC-D	30.7	-5.9	24.8	(-3.4)		0.15*
NHC-F	29.7	-6.7	23.0	(-3.8)		0.20*
Experiment						0.031

• private communication Y. Yamamoto

*) E. Hiyama et al, Phys. Rev. Lett. 85 (2000) 270.

**) H.Tamura, Nucl.Phys. A691 (2001) 86c-92c.

17a ESC-models: S = -2 YY,YN

YY: The $\Lambda\Lambda\text{-systems}$ etc. ESC2004/06

- p.53/69

1

17b ESC-models: YY

YY: The $\Lambda\Lambda\text{-systems}$ ESC2004/07

• Danyz et al (1963), Dalitz et al (1989):

 $\Xi^- + ^{12}C \rightarrow^{10}_{\Lambda\Lambda} Be + p + 2n$, $\Xi^- + ^{14}N \rightarrow^{10}_{\Lambda\Lambda} Be + t + p + n$

 $^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 4.7 \pm 0.4$ MeV !??

- Dover, Maui 1993: $|V_{\Lambda\Lambda}({}^{1}S_{0})| \approx |V_{NN}({}^{1}S_{0})|$ \rightarrow strong attraction in $\Lambda\Lambda$ -systems, H (?!)
- KEK-373: NAGARA-event (2001), Nakazawa et al

$$\Xi^- + {}^{12}C \to {}^6_{\Lambda\Lambda} He + {}^4He + t ,$$

 $^6_{\Lambda\Lambda}He \rightarrow^5_{\Lambda}He + p + \pi^-$, $\Delta B_{\Lambda\Lambda} = 1.01 \pm 0.28 \text{ MeV}$

 $^{10}_{\Lambda\Lambda}Be
ightarrow ^9_{\Lambda}Be^* + p + \pi^-$, $\Delta B_{\Lambda\Lambda} pprox 1.0 \ {\rm MeV} \ !!$

Soft-core models: NSC89, NSC97: |V_{ΛΛ}(ϵ)| < |V_{ΛN}(ϵ)| → weak attraction/repulsion in ΛN, ΞN-sytems.
ESC04d-model: ΔB_{ΛΛ} ≈ 1.0 MeV !! Ξ-well-depth =-18.7 MeV ≈ experiment -(14-16) MeV (!?)

17c ESC-models: YY

$\Delta B_{\Lambda\Lambda}$ Nijmegen ESC-models:

model	$\Delta B_{\Lambda\Lambda}$ MeV	$P_{\Xi N}()$
ESC04a	1.36	0.44
ESC04b	1.37	0.45
ESC04c	0.97	1.15
ESC04d	0.98	1.18
ESC07	0.80	
NSC97f	0.34	0.19
$NHC ext{-}D^a$	1.05	0.14
h		
 exp ^o	1.01 ± 0.20	

• a: NHC-D $r_{HC} = 0.53$ fm.

• b: H. Takahashi et al, PRL 87, 212502 (2001)

18a $\Lambda\Lambda$ -phases

$\Lambda\Lambda$ phases

18b ΞN -phases

ΞN phases

- p.57/69

18c $\equiv N$ -phases

ΞN phases

- p.58/69

quur 12: ESC08b $I = 1 \Xi N$ -phases

18d $\Sigma\Lambda$ -phases

$\Sigma\Lambda$ phases

- p.59/69

18e $\Xi N, \Sigma \Lambda (I = 1)$ X-sections

18 G-matrix ESC-models

Partial wave contributions to $U_{\Xi}(\rho_0)$ at normal density.

model		${}^{1}S_{0}$	${}^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	U_{Ξ}
NHC-D	T = 0	-4.5	2.6	-1.8	-0.2	-0.6	-1.7	
	T = 1	0.2	5.3	-2.6	0.0	-2.9	-5.6	-11.9
ESC04c	T = 0	5.9	-15.7	1.2	-0.1	-1.8	-1.2	
	T = 1	6.8	1.9	-0.8	0.1	-0.3	-1.7	-5.5
ESC04d	T = 0	6.4	-19.6	1.1	1.2	-1.3	-2.0	
	T = 1	6.4	-5.0	-1.0	-0.6	-1.4	-2.8	-18.7
ESC04d*	T = 0	6.3	-18.4	1.2	1.5	-1.3	-1.9	
	T = 1	7.2	-1.7	-0.8	-0.5	-1.2	-2.5	-12.1
ESC08a	T = 0	6.0	-1.0	-0.3	-2.6	1.3	-0.9	
	T = 1	8.5	-28.0	0.6	0.4	-3.7	-0.6	-20.2
ESC08b	T = 0	6.6	0.6	-0.4	-1.6	0.5	-0.7	
	T = 1	9.0	-42.2	0.7	-0.1	-3.6	-1.1	-32.4

• ESC04d*: Medium Effect $\alpha_V = 0.18$. • private communication Y. Yamamoto

19a ESC-models: S = -2, -3, -4 YY,YN

19b ESC08: $\Lambda/\Sigma\Xi$ - and $\Xi\Xi$ -systems

ESC08: $\Lambda \Xi$, $\Sigma \Xi$ - and $\Xi \Xi$ -systems

R-conjugation (Gell-Mann 1961): ⇒

Connection $(NN, \Lambda N / \Sigma N)$ and $(\Xi\Xi, \Lambda / \Sigma\Xi$ -channels:

$$p \leftrightarrow \Xi^{-} , \quad n \leftrightarrow \Xi^{0} , \Lambda \leftrightarrow \Lambda , \quad \Sigma^{0} \leftrightarrow \Sigma^{0}$$
$$K^{+} \leftrightarrow K^{-} , \quad K^{0} \leftrightarrow \bar{K}^{0} , \quad \eta \leftrightarrow \eta , \quad \pi^{0} \leftrightarrow \pi^{0}$$

• For the BB-states:

 $\begin{aligned} R\psi_{27}(Y,I,I_3) &= \psi_{27}(-Y,I,-I_3), & R\psi_{10}(Y,I,I_3) &= \psi_{10*}(-Y,I,-I_3), \\ R\psi_{8s}(Y,I,I_3) &= \psi_{8s}(-Y,I,-I_3), \\ R\psi_{8a}(Y,I,I_3) &= -\psi_{8a}(-Y,I,-I_3), & R\psi_1(Y,I,I_3) &= \psi_1(-Y,I,-I_3), \end{aligned}$

⇒ in SU(3)-structure $(\Xi\Xi, \Lambda/\Sigma\Xi)$ -potentials compared to $(NN, \Lambda\Sigma N)$ the SU3-irreps $\{10\} \leftrightarrow \{10^*\}$ are interchanged!

• R-conjugation \ni SU(3)_f, interactions not invariant(!)

$\Lambda/\Sigma\Xi$, $\Xi\Xi$: SU(6)_{fs}-irreps

$SU(6)_{fs}$ -contents of the various potentials on the isospin,spin basis.						
	(S, I)	$V = aV_{[51]} + bV_{[33]}$				
$\Xi\Xi ightarrow \Xi\Xi$	(0,1)	$V_{\Xi\Xi} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$				
$\Xi\Xi ightarrow \Xi\Xi$	(1,0)	$V_{\Xi\Xi} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$				
$\Lambda\Xi\to\Lambda\Xi$	(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$				
$\Lambda\Xi\to\Lambda\Xi$	(1, 1/2)	$V_{\Lambda\Lambda} = \frac{13}{18} V_{[51]} + \frac{5}{18} V_{[33]}$				
$\Sigma\Xi \to \Sigma\Xi$	(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$				
$\Sigma\Xi \to \Sigma\Xi$	(1, 1/2)	$V_{\Sigma\Sigma} = \frac{13}{18} V_{[51]} + \frac{5}{18} V_{[33]}$				
$\Sigma\Xi \to \Sigma\Xi$	(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$				
$\Sigma\Xi \to \Sigma\Xi$	(1, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$				

University of Nijmegen

19c $\Lambda/\Sigma\Xi$, $\Xi\Xi$: SU(6)_{fs}-irreps

$\Lambda/\Sigma\Xi,\Xi\Xi$: Low-energy parameters

• Effective -range parameters:

$$ESC08a: a_{\Xi\Xi}({}^{1}S_{0}) = -18.8[fm] \quad , \quad r_{\Xi\Xi}({}^{1}S_{0}) = 1.81[fm]$$
$$a_{\Xi\Xi}({}^{3}S_{1}) = 0.73[fm] \quad , \quad r_{\Xi\Xi}({}^{3}S_{1}) = 0.16[fm]$$

$$ESC08b: a_{\Xi\Xi}({}^{1}S_{0}) = 122.5[fm] \quad , \quad r_{\Xi\Xi}({}^{1}S_{0}) = 1.68[fm]$$
$$a_{\Xi\Xi}({}^{3}S_{1}) = 0.82[fm] \quad , \quad r_{\Xi\Xi}({}^{3}S_{1}) = 0.49[fm]$$

• ESC08b: ${}^{1}S_{0}$ -bound state !!?

19d ESC08b: $\Xi\Xi(^{1}S_{0})$ -potential

Summary 2008/2009-revision ESC-model

Summary and Comparison ESC04 and ESC08

<u>Construction ESC-solutions</u>: Important role G-matrix input $U_{\Lambda}, U_{\Sigma}, U_{\Xi}, \Delta B_{\Lambda\Lambda}$, spin-spin and spin-orbit ΛN .

Improving ESC-model: ESC04 \Rightarrow ESC08:

- 1. introduction quark-core effects,
- 2. axial-vector mesons B-field formalism (Nakanishi),
- 3. complete 1/M corrections pair terms ($\pi\omega$ etc.),
- 4. introduction Odderon.

Results:

- a. superior <u>NN-fit</u> and YN-fit,
- b. ${}^3P_0 \rightarrow {}^3P_0 + {}^3S_1$ -scheme c.c.'s ,
- c. superior $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$, etc.,
- d. important change tensor forces for S=-2,-3 systems
- \Rightarrow possibility 'deuteron-like' $\Xi N(^{3}S_{1}, I = 1)$ -state !
- \Rightarrow favorable accessibility K^-K^+ -experiments !

Conclusions and Status YN-interactions

Conclusions and Prospects

- 1. High-quality Simultaneous Fit/Description $NN \oplus YN$, OBE, TME, MPE meson-exchange dynamics. $SU_f(3)$ -symmetry, (Non-linear) chiral-symmetry.
- 2. NN,YN,YY: Couplings $SU_f(3)$ -symmetry, ${}^{3}P_{0}$ -dominance QPC, Quark-core effect: ${}^{3}S_{1}(\Sigma N, I = 3/2)$ is strongly repulsive, ΛN : spin-orbit interaction is small,
- 3. Scalar-meson nonet structure \Leftrightarrow Nagara $\Delta B_{\Lambda\Lambda}$ values.
- 4. Prediction $D_{\Xi N} = \Xi N(I = 1, {}^{3}S_{1})$ b.s. !? , $D_{\Xi \Xi} = \Xi \Xi (I = 1, {}^{1}S_{0})$ b.s. !?

Status of understanding the YN/YY-interactions:

- a. ESC08: Excellent G-matrix predictions for the $U_{\Lambda}, U_{\Sigma}, U_{\Xi}$ well-depth's, ΛN spin-spin and spin-orbit, and Nagara-event okay.
- b. Similar role tensor-force in ${}^{3}S_{1}$ NN-, $\Lambda/\Sigma N$ -, ΞN -, and $\Lambda/\Sigma \Xi$ -channels.
- c. Different good solutions (e.g. ESC08a,b) \Rightarrow predictions are 'solution-sensitive/dependent'.
- JPARC, TJNAL, FINUDA: new data Hypernuclei, Ξ-hypernuclei (!)
- JPARC: $\Sigma^+ P$, ΛP scattering !!?