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Introduction — motivation

|. Elementary production

 The reaction mechanism — Quark models or effective
Lagrangian theory?

 Nucleon and hyperon resonances - mass (“missing”
resonances), couplings and form factors;

e Hypernucelus-production calculations — precise
knowledge of the elementary amplitude is important
for good predictions of hypernuclear cross sections;



Il. Production of hypernuclel

* No Pauli blocking for A — transparent shell structure
- dynamics of many-body hadronic systems can be
studied (nuclear models);

YN Interaction in the nuclear medium

- spin dependent parts (from AN scattering data
only averaged s-state interaction is known),

- A—X mixing and charge symmetry;
« Non mesonic weak decays of A: AN 2> nN (T'/T';)

* Modifications of A properties in the nuclear medium
(e.g. magnetic moment)



A hyperon occupies s, p, d, and f shell orbits in 8y,
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Photo- and electroproduction of kaons on nucleons

e + N > e' '+ K + Y

6 channels: N = p, n,

Y=A %, K=K,K’

One-photon approximation — the electromagnetic and hadron parts

can be separated

The unpolarized cross section in lab frame:
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Models for y v + N > K + Y

® |sobaric model;

® Multipole analysis (T. Mart and A. Sulaksono);

® Regge formalism (M. Guidal etal., E > 4 GeV);
®* Quark model (Zhenping Li et al.);

®* Regge-plus-resonance model (T. Corthals et al.);

® Unitary approach (G. Penner, T. Feuster, and U. Mosel; B. Julia-
Diaz et al., A. Usov and O. Scholten);

® Chiral perturbation theory (S. Steininger and U.-G. Meissner);

®  Chiral unitary framework (B. Borasoy et al.).



Isobaric model for Yy * N = K + ¥

 Meson-baryon final-state interaction neglected: =V

- violation of unitarity (single-channel calculations),

- coupling constants absorb a part of the rescattering
effects;

e The driving term

- an effective hadron Lagrangian,

- the perturbation theory on the tree-level approximation
(s, t, and u-channel Feynman graphs),
- coupling constants are fitted to experimental data from

JLab (CLAS), ELSA(SAPHIR), SPring-8(LEPS), ESFR(GRAAL), LNS
and MAMI (do/dQ, o', P, X, T)



e No dominant resonance in
p(y,K*)A

- many resonances (20 - 30) with a
reasonable branching ratio to the KA

channel are assumed

=> large number of models for

p(7K)A with a good ¥
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Constraints on the models

— SU(3) symmetry (gyn, and gy, are related to g )
—crossing symmetry (7p > K'A < K p—>yA)
— duality hypothesis

Form factors

— electromagnetic vertex (M.F. Gari and W. Krumpelmann)

— hadronic vertex — violation of gauge invariance — a contact term
IS included to restore the invariance (H. Haberzettl)

Example of isobaric models for the KA channel

— models include: Born terms (p, 4, 2, K), K*(890) and K,(1270)

Saclay-Lyon A: no hadronic f. f., SU(3), crossing, many Y*(1/2)
but only N*(1720)(3/2%);

Kaon-MAID: hadronic f. f., SU(3), no Y" but N*(1650)(1/2),
N*(1710)(1/2%), N*(1720)(3/2%), and N*(1895)(3/2)




Models give different predictions for the production at small

kaon angles - large uncertainty in calculations of the cross sections for
the production of hypernuclei
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Results of DWIA calculation of the cross section

for the electroproduction of 1°B, at 1.3 GeV
(Q?is very small)

uncertainty 20 — 30 % —— Experiment E89-009
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Photoproduction of K° on deuteron

 Relation of the amplitudes for K* and K° photoproduction
- Isospin symmetry for the strong coupling constants

- electromagnetic c. c. from the helicity amplitudes and decay widths

: (for Ky ria,= 9%9*
* Photoproduction on deuteron target s free parameter)

- PWIA calculations, interaction in the final state (FSI) is neglected

- KA FSl is partially absorbed in the coupling constants of the
elementary amplitude and KN FSI is weak; AN FSI at low energies ...?

- effects of FSI in the inclusive cross section are small below 1.1 GeV
(A. Salam et al. Phys. Rev. C 74 (2006) 044004)

- inclusive cross sections in the K°A channel are calculated —
contributions of the X-channels are very small in the threshold region



Data on inclusive cross section d(y,K°)YN Y=A, 20 and =+
from LNS, Tohoku Uni. K. Tsukada et al, Phys.Rev. C 78 (2008) 014001

Energy-averaged and kaon-angle-integrated momentum distributions
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Electroproduction of Hypernuclel

e + 4> e'+ K+t + H 7 -spectrum of states for
H: B, N, ...
Many-body matrix element in DWIA

y4
Wl 2 2 d"@)|w.,)
i=1

JH(i) — elementary hadron current in lab frame (frozen-nucleon approx.)
Xy virtual-photon wave function (one-photon approx.)
X — distorted kaon wave f. (eikonal approx., 1st order optical potential)

¥,(¥,) - target nucleus (hypernucleus) nonrelativistic wave functions



Shell model description of p-shell nuclei
and hypernuclel

¥, - Cohen-Kurath NN interaction in s*pA4 model space

TH - phenomenological effective AN interaction (John Millener)
Vin (1) = Vo (r) + V, (1) Sy Sy + V(1) £y - Sp + V() £y Sy + V5 (1) Sy,

radial integrals are parameterized (A in s-shell):

—

VAN :V+A§A'§N +SAZAN '§A +SN €AN '§N +T812

parameters A, S,, Sy, and T fitted to y-ray spectra of ’Li,, °Be,, and 1O,
(e.g., A=0.33, 5,=-0.015, S§,=-0.35, T =0.024 all in MeV )

A-% mixing (AN < 2N) included (s\* p\*™ S, + Sy* P Sy)



AN is weaker than NN => hypernucleus states can be build up
on the states of the core nucleus (weak coupling model)

Particle-emission 2p
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Results for p-shell hypernuclel: spectrum of 2B,

Theoretical prediction: elementary operator — Saclay-Lyon A model

(dashed line)

AN interaction from vy-ray spectra of “Li,
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Spectrum of 6N,
Theoretical prediction: elementary operator — Saclay-Lyon A model
(dashed line) AN interaction fitted to %0, and >N, spectra

Data: the E94-107 experiment in JLab, Hall A (F. Cusanno et al)
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Summary

Elementary process N(y,K)A

data at very small 6, are needed to fix the models for K*
production at forward angles (necessary for reliable
nhypernuclear calculations);

the first data on K° photoproduction near threshold prefer
the models which give enhancement of the cross section
at the backward angles;

Hypernucleus electroproduction

predictions of the DWIA shell-model calculations agree
well with the spectra of 1B , and '®N , for A in s-state,

In the p , region more elaborate calculations (core-nucleus
lhw states) are needed to fully understand the data;

the Saclay-Lyon model for the elementary process gives
reasonable cross sections — good behaviour at small §;?
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How to produce hypernuclel?

(K-, ) — small momentum transfer (below 100 MeV/c)
(stopped / inflight) — non spin-flip dominates (AS=AL=0)
— predominantly substitutional states populated (poor spectrum)
— G : mb/sr (strangeness exchange)

(n*, K*)  —larger momentum transfer than in (K-, ©") (300 MeV/c)
— AS =0, AL = AJ =1, 2 natural-parity states populated
— o : ub/sr (associated production of strangeness)
— rich series of A single-particle states — y-ray spectroscopy

(e,e’K*) — momentum transfer as in (r*, K*) (350 MeV/c)
— spin-flip dominates: AS=1, AL=1,2, AJ=1,2,3
— wide variety of A single-particle states are populated

— O : nb/sr (production of strangeness in the electromagnetic process)
— production on proton — other hypernuclei than in (r,K)



Kinematics

. _ ()
Scattering (Leptonic) Plane K

Reaction (Hadronic) Plane

Detection of e’ and K* at very forward angles (6.:0-6°, 6,: 6°

due to a steeply decreasing angular dependence of the virtual-photon flux
and nucleus-hypernucleus transition form factors.

Hypernuclear production cross section is measured as a
function of hypernucleus excitation energy.



°Be target - Hypernuclear Spectrum of °Li,

Theoretical calculation: elementary operator — Saclay-Lyon A model,

wave functions by John Millener (fitted to y-ray spectroscopy data)

predictions for various energy
resolutions (FWHM)
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Angular dependence of the cross section

for electroproduction of °N, at E = 2.21 GeV and 6, = 6°

nb/sr2/GeV

Cross sections in lab frame for doublet J=1-, 2-
at E, 6.71 and 6.93 MeV

- in general, steeply decreasing dependence

(the momentum transfer changes rapidly);
- the slope depends on the spin (J);
N - behaviour depends on the elementary
S\ amplitude (at small 8,)) — information

about the amplitude at small angles.
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