Strangeness Electromagnetic Production on Nucleons and Nuclei

Petr Bydžovský in collaboration with Miloslav Sotona

Nuclear Physics Institute, Řež near Prague, Czech Republic

10th International Conference on Hypernuclear and Strange Particle Physics, Tokai, Japan, September 14 - 18, 2009

Outline:

- Introduction
- Photo- and electroproduction of kaons on nucleons
- Photoproduction of K⁰ on deuteron
- Electroproduction of hypernuclei
- Summary

Introduction – motivation

- I. Elementary production
 - The reaction mechanism Quark models or effective Lagrangian theory?
 - Nucleon and hyperon resonances mass ("missing" resonances), couplings and form factors;
 - Hypernucelus-production calculations precise knowledge of the elementary amplitude is important for good predictions of hypernuclear cross sections;

II. Production of hypernuclei

- <u>No Pauli blocking for Λ</u> transparent shell structure
 dynamics of many-body hadronic systems can be studied (nuclear models);
- YN interaction in the nuclear medium
 - spin dependent parts (from ΛN scattering data only averaged s-state interaction is known),
 - Λ - Σ mixing and charge symmetry;
- Non mesonic weak decays of $\Lambda : \Lambda N \rightarrow nN$ (Γ_n/Γ_p)
- Modifications of A properties in the nuclear medium (e.g. magnetic moment)

A hyperon occupies s, p, d, and f shell orbits in ⁸⁹Y_A

Hotchi et al, Phys. Rev. C 64 (2001) 044302

Photo- and electroproduction of kaons on nucleons

$$e + N \rightarrow e' + K + Y$$

6 channels: N = p, n; $Y = \Lambda$, Σ ; $K = K^+$, K^0

One-photon approximation – the electromagnetic and hadron parts

$$\begin{array}{c} \text{can be separated} \\ \text{The unpolarized cross section in lab frame:} \\ \hline \frac{d^{3}\sigma}{dE_{e'}d\Omega_{e'}d\Omega_{K}} = \Gamma \left[\frac{d\sigma_{T}}{d\Omega_{K}} + \varepsilon \frac{d\sigma_{L}}{d\Omega_{K}} + \varepsilon \frac{d\sigma_{TT}}{d\Omega_{K}} \cos 2\Phi + \sqrt{\varepsilon(\varepsilon+1)} \frac{d\sigma_{TL}}{d\Omega_{K}} \cos \Phi \right] \end{array}$$

Models for $\gamma_{(v)} + N \rightarrow K + Y$

Isobaric model;

- Multipole analysis (*T. Mart and A. Sulaksono*);
- Regge formalism (*M. Guidal et al.,* $E_{\gamma} > 4$ GeV);
- Quark model (*Zhenping Li et al.*);
- Regge-plus-resonance model (*T. Corthals et al.*);
- Unitary approach (G. Penner, T. Feuster, and U. Mosel; B. Julia-Diaz et al., A. Usov and O. Scholten);
- Chiral perturbation theory (S. Steininger and U.-G. Meissner);
- Chiral unitary framework (*B. Borasoy et al.*).

<u>Isobaric model</u> for $\gamma_{(v)} + N \rightarrow K + Y$

- Meson-baryon final-state interaction neglected: $\mathbf{T} = \mathbf{V}$
 - violation of unitarity (single-channel calculations),
 - coupling constants absorb a part of the rescattering effects;
- The driving term
 - an effective hadron Lagrangian,
 - the perturbation theory on the tree-level approximation (*s, t,* and *u*-channel Feynman graphs),

- coupling constants are fitted to experimental data from JLab (CLAS), ELSA(SAPHIR), SPring-8(LEPS), ESFR(GRAAL), LNS and MAMI (d\sigma/d\Omega, σ^{tot} , P, Σ , T)

• No dominant resonance in $p(\gamma, K^+)\Lambda$

- many resonances (20 - 30) with a reasonable branching ratio to the KA channel are assumed

=> large number of models for $p(\gamma, K)\Lambda$ with a good χ^2

30

25

20

15

10

5

0.2

P₃₃(1232

 $\theta = 90^{\circ}$

0.3

0.4

0.5

[µb/sr]

 $d\sigma / d\Omega$

Born terms

 $\gamma + n \rightarrow \pi + p$

0.6

Born+ Δ (M1)

0.7

0.8

- Constraints on the models
 - SU(3) symmetry ($g_{\rm KN\Lambda}$ and $g_{\rm KN\Sigma}$ are related to $g_{\pi \rm NN}$)
 - crossing symmetry ($\gamma p \rightarrow K^+ \Lambda \iff K^- p \rightarrow \gamma \Lambda$)
 - duality hypothesis
- Form factors
 - electromagnetic vertex (M.F. Gari and W. Krumpelmann)
 - hadronic vertex violation of gauge invariance a contact term is included to restore the invariance (*H. Haberzettl*)
- Example of isobaric models for the KΛ channel

 models include: Born terms (p, Λ, Σ, K), K*(890) and K₁(1270)

 Saclay-Lyon A: no hadronic f. f., SU(3), crossing, many Y*(1/2) but only N*(1720)(3/2+);

Kaon-MAID: <u>hadronic f. f.</u>, SU(3), <u>no Y*</u> but N*(1650)(1/2⁻), N*(1710)(1/2⁺), N*(1720)(3/2⁺), and N*(1895)(3/2⁻) Models give different predictions for the production at small kaon angles – large uncertainty in calculations of the cross sections for the production of hypernuclei

Results of DWIA calculation of the cross section for the electroproduction of ${}^{12}B_{\Lambda}$ at 1.3 GeV (Q² is very small)

Photoproduction of K⁰ on deuteron

- Relation of the amplitudes for K⁺ and K⁰ photoproduction
 - isospin symmetry for the strong coupling constants
 - electromagnetic c. c. from the helicity amplitudes and decay widths
- Photoproduction on deuteron target

(for K_1 : $\mathbf{r}_{\mathbf{K}\mathbf{1}\mathbf{K}\gamma} = g^0/g^+$ is free parameter)

- PWIA calculations, interaction in the final state (FSI) is neglected

- $K\Lambda$ FSI is partially absorbed in the coupling constants of the elementary amplitude and KN FSI is weak; ΛN FSI at low energies ...?

- effects of FSI in *the inclusive cross section* are small below 1.1 GeV (A. Salam et al. Phys. Rev. C 74 (2006) 044004)

- inclusive cross sections in the K⁰ Λ channel are calculated – contributions of the Σ -channels are very small in the threshold region

Data on inclusive cross section $d(\gamma, K^0)YN$ Y= Λ , Σ^0 and Σ^+ from LNS, Tohoku Uni. *K. Tsukada et al, Phys.Rev. C* 78 (2008) 014001 Energy-averaged and kaon-angle-integrated momentum distributions

Electroproduction of Hypernuclei

$$e + A \rightarrow e' + K^{+} + H^{*}$$
 - spectrum of states for
 $H: {}^{12}B_{\Lambda}, {}^{16}N_{\Lambda}...$

Many-body matrix element in **DWIA**

$$\left\langle \psi_{H} \mid \sum_{i=1}^{Z} \chi_{\gamma} \chi_{K}^{*} J^{\mu}(i) | \psi_{A} \right\rangle$$

 $J^{\mu}(i)$ – elementary hadron current in lab frame (frozen-nucleon approx.) χ_{γ} – virtual-photon wave function (one-photon approx.) χ_{K} – distorted kaon wave f. (eikonal approx., 1st order optical potential) $\Psi_{A}(\Psi_{H})$ - target nucleus (hypernucleus) nonrelativistic wave functions

Shell model description of *p*-shell nuclei and hypernuclei

 Ψ_A - Cohen-Kurath NN interaction in s⁴p^{A-4} model space

 $\Psi_{H} \text{ - phenomenological effective } \Lambda N \text{ interaction (John Millener)}$ $V_{\Lambda N}(r) = V_{0}(r) + V_{\sigma}(r) \vec{s}_{\Lambda} \cdot \vec{s}_{N} + V_{\Lambda}(r) \vec{\ell}_{\Lambda N} \cdot \vec{s}_{\Lambda} + V_{N}(r) \vec{\ell}_{\Lambda N} \cdot \vec{s}_{N} + V_{T}(r) S_{12}$

radial integrals are parameterized (Λ in s-shell):

$$\mathbf{V}_{\Lambda \mathbf{N}} = \overline{\mathbf{V}} + \Delta \vec{\mathbf{s}}_{\Lambda} \cdot \vec{\mathbf{s}}_{\mathbf{N}} + \mathbf{S}_{\Lambda} \vec{\ell}_{\Lambda \mathbf{N}} \cdot \vec{\mathbf{s}}_{\Lambda} + \mathbf{S}_{\mathbf{N}} \vec{\ell}_{\Lambda \mathbf{N}} \cdot \vec{\mathbf{s}}_{\mathbf{N}} + \mathbf{T} \mathbf{S}_{12}$$

parameters Δ , S_{Λ} , S_{N} , and T fitted to γ -ray spectra of ${}^{7}\text{Li}_{\Lambda}$, ${}^{9}\text{Be}_{\Lambda}$, and ${}^{16}\text{O}_{\Lambda}$ (e.g., $\Delta = 0.33$, $\underline{S}_{\Lambda} = -0.015$, $S_{N} = -0.35$, $\underline{T} = 0.024$ all in MeV)

 $\Lambda - \Sigma$ mixing ($\Lambda N \leftrightarrow \Sigma N$) included ($s_N^4 p_N^{A-5} s_\Lambda + s_N^4 p_N^{A-5} s_\Sigma$)

 ΛN is weaker than NN => hypernucleus states can be build up on the states of the core nucleus (weak coupling model)

Results for p-shell hypernuclei: spectrum of ¹²B_A *Theoretical prediction*: elementary operator – Saclay-Lyon A model ΛN interaction from γ -ray spectra of $^{7}Li_{\Lambda}$ (dashed line) $^{12}C(e,e'K^{+})^{12}B_{\Lambda}^{*}$ sr²GeV·MeV 1+, 2+, 3+ | $p_{1/2\Lambda}$, $p_{3/2\Lambda}$ $\mathbf{S}_{1/2\Lambda}$ $E_{\gamma} = 2.2 \text{ GeV}$ 4 1-, **2**- $\theta_e = \theta_K = 6^\circ$ $Q^2 = 0.018 \text{ GeV}^2$ dE_{exc} dΩ_e dΩ_K dE_e $^{11}B(3/2^{-}, g. s.)$ ¹¹B(1/2⁻, 2.12) ¹¹B(3/2⁻, 5.02) Larger model space? 10 \cap 20 **Excitation Energy (MeV)**

data: E94-107, JLab Hall A, M. Iodice et al, Phys. Rev. Lett. 99 (2007) 052501

Spectrum of ${}^{16}N_{\Lambda}$

Summary

Elementary process $N(\gamma, K)\Lambda$

- data at very small θ_{κ} are needed to fix the models for K⁺ production at forward angles (necessary for reliable hypernuclear calculations);
- the first data on K⁰ photoproduction near threshold prefer the models which give enhancement of the cross section at the backward angles;

Hypernucleus electroproduction

- predictions of the DWIA shell-model calculations agree well with the spectra of ${}^{12}B_A$ and ${}^{16}N_A$ for A in s-state;
- in the p_A region more elaborate calculations (core-nucleus 1hω states) are needed to fully understand the data;
- the Saclay-Lyon model for the elementary process gives reasonable cross sections good behaviour at small θ_{K} ?

<u>s-channel</u>

How to produce hypernuclei?

(K⁻, π^-) - small momentum transfer (below 100 MeV/c) (stopped / inflight) - non spin-flip dominates ($\Delta S = \Delta L = 0$) - predominantly substitutional states populated (poor spectrum)

- $-\sigma$: mb/sr (strangeness exchange)
- $(\pi^+, \mathbf{K^+})$ larger momentum transfer than in (K⁻, π^-) (300 MeV/c) – $\Delta S = 0$, $\Delta L = \Delta J = 1$, 2 natural-parity states populated
 - $-\sigma$: µb/sr (associated production of strangeness)
 - rich series of Λ single-particle states γ -ray spectroscopy
- (e,e'K⁺) momentum transfer as in (π^+ , K⁺) (350 MeV/c)
 - spin-flip dominates: $\Delta S = 1$, $\Delta L = 1$, 2, $\Delta J = 1$, 2, 3
 - wide variety of Λ single-particle states are populated
 - $-\sigma$: nb/sr (production of strangeness in the electromagnetic process)
 - production on proton other hypernuclei than in (π, K)

Kinematics

Detection of e' and K⁺ at very forward angles (θ_e : 0 – 6°, θ_{κ} : 6°)

due to a steeply decreasing angular dependence of the virtual-photon flux and nucleus-hypernucleus transition form factors.

Hypernuclear production cross section is measured as a function of hypernucleus excitation energy.

⁹Be target - Hypernuclear Spectrum of ${}^{9}Li_{\Lambda}$

Theoretical calculation: elementary operator - Saclay-Lyon A model,

wave functions by John Millener (fitted to γ -ray spectroscopy data)

Angular dependence of the cross section

for electroproduction of ${}^{16}N_{\Lambda}$ at E_{\gamma}= 2.21 GeV and θ_{e} = 6°

 $\theta_{\mathbf{Ke}}$ is kaon lab angle with respect to beam