<u>K-pp studied with</u>

Coupled-channel Complex Scaling method

A. Dote (KEK) and T. Inoue (Tsukuba univ.)

- 1. Introduction
 - Result of a variational calculation with an effective *s*-wave chiral SU(3)-based *K*^{bar}N potential
 - Recent status of *K*-*pp* study
- 2. Question Variational calculation vs Faddeev calculation -
- 3. Complex scaling method
- 4. Summary and Future plan

10th international conference on Hypernuclear and Strange particle physics (Hyp-X) '09.09.17 @ Ricotti, Tokai, Japan

K^{bar} nuclei (Nuclei with anti-koan) = Exotic system !?

I=0 K^{bar}N potential ... very attractive

 \longrightarrow

Deeply bound (Total B.E. ~100MeV) Highly dense state formed in a nucleus Interesting structures that we have never seen in normal nuclei...

Calculated with Antisymmetrized Molecular Dynamics method employing a phenomenological K^{bar}N potential

A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, PRC70, 044313 (2004)

To make the situation more clear ...

$$"K-pp" = Prototype of Kbar nuclei$$

$$(KbarNN, Jp=1/2-, T=1/2)$$

A. Dote, T. Hyodo and W. Weise, Nucl. Phys. A804, 197 (2008) Phys. Rev. C79, 014003 (2009)

Variational calculation of K-pp with a chiral SU(3)-based K^{bar}N potential

✓ <u>Av18 NN potential</u> ... a realistic NN potential with strong repulsive core.

✓ Effective K^{bar}N potential based on Chiral SU(3) theory

... reproduce the original K^{bar}N scattering amplitude obtained with coupled channel chiral dynamics.

Single channel, Energy dependent, Complex, Gaussian-shape potential

✓ Variational method

... Investigate various properties with the obtained wave function.

Four variants of chiral unitary modes \mathbf{X} $\sqrt{s} = \begin{cases} M_N + M_N \\ M_N + M_N \end{cases}$

$$\checkmark \quad \sqrt{s} = \begin{cases} M_N + m_K - B(K) \\ M_N + m_K - B(K)/2 \end{cases}$$

Total B. E.	:	$20 \pm$	3	MeV
$\Gamma(K^{bar}N \rightarrow \pi Y)$:	40 ~	70	MeV

Shallow binding and large decay width

NN distance	=	2.2 fm
K ^{bar} N distance	=	2.0 fm

NN distance in normal nuclei

A. Dote, T. Hyodo and W. Weise, Nucl. Phys. A804, 197 (2008) Phys. Rev. C79, 014003 (2009)

Total B. E.	:	$20 \pm 3 \text{ MeV}$
$\Gamma(K^{bar}N \to \piY)$:	40 ~ 70 MeV

Shallow binding and large decay width

NN distance	=	2.2 fm
K ^{bar} N distance	=	2.0 fm

NN distance in normal nuclei

Recent results of calculation of K⁻pp and related experiments

Width ($K^{bar}NN \rightarrow \pi YN$) [MeV]

Recent results of calculation of K⁻pp and related experiments

Width ($K^{bar}NN \rightarrow \pi YN$) [MeV]

???

Why does the result of a variational calculation (DHW) differ from that of a Faddeev calculation (IS)?

although the $K^{bar}N$ potentials used in both calculations are constrained with Chiral SU(3) theory.

✓ Separable potential?

- ✓ Non-relativistic (semi-relativistic) vs relativistic?
- ✓ Energy dependence of two-body system (K^{bar}N) in the three-body system (K^{bar}NN)?
- ✓ Important role of π *ΣN* thee-body dynamics?

✓ ...???

A possible reason is

 $\pi\Sigma N$ thee-body dynamics

Y. Ikeda and T. Sato, arXiv:0809.1285

In the variational calculation (DHW), $\pi\Sigma$ channel is eliminated and incorporated into the effective *K*^{bar}*N* potential.

Two-body system

- This is correct for the two-body system.
- The effective $K^{bar}N$ potential has energy dependence due to the elimination of $\pi\Sigma$ channel.
- It reproduces the original $K^{bar}N$ scattering amplitude calculated with $K^{bar}N$ - $\pi\Sigma$ coupled channel model.

Apply the effective *K*^{bar}*N* potential

to the three-body system...

Three-body system calculated with the effective KbarN potential

The energy of the intermediate $\pi\Sigma$ state is fixed to the initial $K^{bar}N$ energy.

Not true!

Apply the effective *K*^{bar}*N* potential

to the three-body system...

Three-body system calculated with the effective K^{bar}N potential

Due to the third nucleon,

the intermediate $\pi\Sigma$ energy can differ from the initial $K^{bar}N$ energy.

Apply the effective K^{bar}N potential

to the three-body system...

Three-body system calculated with the effective KbarN potential

$\pi\Sigma N$ thee-body dynamics

Due to the third nucleon, the intermediate $\pi\Sigma$ energy can differ from the initial $K^{bar}N$ energy.

Only the total energy of the three-body system should be conserved. The intermediate energy of the $\pi\Sigma$ state can be variable, due to the third nucleon.

On the other hand, such a $\pi\Sigma N$ three-body dynamics is taken into account in the Faddeev calculation, because the $\pi\Sigma$ channel is directly treated in their calculation.

Dr. Ikeda's talk in KEK theory center workshop "Nuclear and Hadron physics" (KEK, 11-13 Aug. '09)

To consider the $\pi\Sigma N$ three-body dynamics, we should perform the coupled channel calculation also in our scheme.

The " $\pi\Sigma$ " degree of freedom is directly treated.

• The actual calculation is done in multi channels such as $K^{bar}N$ and $\pi\Sigma$.

• The obtained state is possibly to appear below $K^{bar}NN$ threshold, but above $\pi\Sigma N$ threshold.

To consider the $\pi\Sigma N$ three-body dynamics, we should perform the coupled channel calculation also in our scheme.

The " $\pi\Sigma$ " degree of freedom is directly treated.

Advised by Dr. Myo (RCNP)

Complex rotation of coordinate

$$U(\theta): \mathbf{r} \to \mathbf{r} e^{i\theta}, \quad \mathbf{k} \to \mathbf{k} e^{-i\theta} \qquad H_{\theta} \equiv U(\theta) H U^{-1}(\theta), \quad |\Phi_{\theta}\rangle \equiv U(\theta) |\Phi\rangle$$

$$E = \langle \Phi | H | \Phi \rangle = \langle \widetilde{\Phi}_{\theta} | H_{\theta} | \Phi_{\theta} \rangle$$

Wave function of a resonant state (two-body system)

Negative!

When $\tan \theta > \frac{\gamma}{\kappa}$

the wave function of a resonant state changes to a dumping function.

Boundary condition is the same as that for a bound state.

The resonant state can be obtained by *diagonalizing* H_{θ} with Gaussian basis, quite in the same way as calculating bound state.

Succeeded in nuclear physics

... Especially used in the study of unstable nuclei.

Resonant state of ⁶He

S. Aoyama, T. Myo, K. Kato and K. Ikeda, Prog. Theor. Phys. 116, 1 (2006)

Advised by Dr. Myo (RCNP)

4. Summary and Future plan

Current status of the study of K^{bar} nuclei

The most essential K^{bar} nuclei " $K^{-}pp$ " ($K^{bar}NN$, $J^{p}=1/2^{-}$, T=0) has been investigated in various ways. But the situation is still controversial...

Theory

Variational + Pheno	om. K ^{bar} N B.E. =	= 47MeV, Г	= 61MeV	PRC76, 045201(2007)
Variational + Chiral	-based K ^{bar} N B.E. =	<u>= 20<i>±</i>3МеV.</u> Г	= 40-70MeV	PRC79. 014003(2009)
Faddeev + Pheno	om. K ^{bar} N B.E. =	= 50~70MeV, Г	=~100MeV	PRC76, 044004(2007)
Faddeev + Chiral	-based K ^{bar} N B.E. =	= 79MeV, Г	= 74MeV	PRC76, 035203(2007)

Experiment (Unknown object which seems related to K-pp)

FINUDA	B.E. = 116MeV,	Г= 67MeV	PRL94, 212303(2005)
DISTO	B.E. = 105MeV,	Г= 118MeV	arXiv:0810.5182 [nucl-ex]

?

Difference between a variational calculation (DHW) and a Faddeev calculation (IS) might be caused by $\pi\Sigma N$ three-body dynamics.

Y. Ikeda and T. Sato, arXiv:0809.1285

Coupled channel Complex Scaling

• Resonant states can be calculated quite in similar way to treat bound states.

Diagonalizing the complex-rotated Hamiltonian, resonant states are obtained.

4. Summary and Future plan

<u>Future plan</u>

Do calculations!

1. Calulate two-body system ... $K^{bar}N-\pi\Sigma$ system corresponding to $\Lambda(1405)$

• For a test calculation, a phenomenological *K*^{bar}*N* potential (AY potential, energy-independent) will be employed.

Y. Akaishi and T. Yamazaki, PRC 52 (2002) 044005

• See what happen if we use a chiral SU(3)-based *K*^{bar}*N* potential (HW potential, energy-dependent).

T. Hyodo and W. Weise, PRC77, 035204(2008)

2. Calulate three-body system ... $K^{bar}NN-\pi\Sigma N$ system corresponding to " $K^{-}pp$ "

I'm sorry because I can't show any new result...