On the resonance energy of the $K^{\text {bar }} \mathrm{NN}-\pi \mathrm{YN}$ system

Y. Ikeda (Univ. Tokyo / RIKEN)

In collaboration with
Toru Sato (Osaka Univ.) and Hiroyuki Kamano (Jlab)
\checkmark Strange dibaryon (Recent theoretical progress)
\checkmark Model of KN interaction
\checkmark Faddeev approach and variational approach
\checkmark Numerical Results
\checkmark Summary

Strange dibaryon resonance
 - Our motivation -

\checkmark Attractive KN interaction, $\Lambda(1405)$, Strange dibaryon

\square Analysis of Kaonic hydrogen atom and presence of Λ (1405)
$\rightarrow \mathrm{K}^{\mathrm{bar}} \mathrm{N}$ interaction is strongly attractive.
$\checkmark \Lambda$ (1405) resonance

```
\overline{K}N1435 MeV
    \Lambda(1405)
    ->S-wave resonance
    \pi\Sigma\stackrel{1331 MeV}{}
                                in the K }\mp@subsup{K}{}{\mathrm{ bar }}N-\pi\Sigma\mathrm{ coupled channel system
```

\checkmark It is very important to take into account the "full dynamics" of KN- $\pi \Sigma$ system in order to investigate energy of strange dibaryon resonance.

\checkmark Strange dibaryon - Our motivation -

KN interaction	Phenomenological	Weinberg-Tomozawa
Variational Method (B, Γ)	Akaishi, Yamazaki $(48,60) \mathrm{MeV}$	Dote, Hyodo, Weise $(17-23,40-70) \mathrm{MeV}$
Faddeev equation (B, Γ)	Shevchenko, Gal, Mares $(55-70,90-110) \mathrm{MeV}$	Ikeda, Sato $(45-80,45-75) \mathrm{MeV}$

Many theoretical studies suggest possible existence of strange dibaryon, but... predicted binding energy and width widely spread.

> Major uncertainty in theoretically estimating energy of strange dibaryon is that an accurate description of the KN interaction including its off-shell behavior is still missing.

\checkmark Taking a reverse viewpoint, we may hope that there is a possibility to constrain KN dynamics from the study of strange dibaryon.
\checkmark It is crucial to treat the three-body dynamics as accurately as possible in a theoretical calculation for a given KN model.

\checkmark Strange dibaryon - Our motivation -

KN interaction	Phenomenological	Weinberg-Tomozawa
Variational Method (B, Γ)	Akaishi, Yamazaki $(48,60) \mathrm{MeV}$	Dote, Hyodo, Weise $(17-23,40-70) \mathrm{MeV}$
Faddeev equation (B, Γ)	Shevchenko, Gal, Mares $(55-70,90-110) \mathrm{MeV}$	Ikeda, Sato $(45-80,45-75) \mathrm{MeV}$

Many theoretical studies suggest possible existence of strange dibaryon, but... predicted binding energy and width widely spread.

In this work, we compare Fadd
From this analysis, we extract the "explicit" π YN coupled-channel effect
\checkmark It is crucial to treat the three-body dynamics as accurately as possible in a theoretical calculation for a given KN model.

Model of $\mathrm{K}^{\text {bar }} \mathrm{N}$ interaction

$\checkmark K^{\text {bar }} \mathbf{N}$ potential model

We start from leading order term of effective chiral Lagrangian.

$$
\begin{gathered}
\text { Weinberg-Tomozawa interaction } \\
\qquad \begin{array}{c}
\mathcal{L}_{\mathcal{I}}=\frac{i}{8 F_{\pi}^{2}} \operatorname{Tr}\left[\bar{B} \gamma^{\mu}\left[\Gamma_{\mu}^{2}, B\right]\right] \\
\Gamma_{\mu}^{2}=\Phi\left(\partial_{\mu} \Phi\right)-\left(\partial_{\mu} \Phi\right) \Phi
\end{array}
\end{gathered}
$$

$\boldsymbol{\Phi}:$ Meson field, B:Baryon field

S-wave separable potential

$$
\begin{aligned}
V_{M B}\left(q^{\prime}, q\right)=-4 \pi \lambda_{\alpha \beta}^{(I)} \frac{1}{(2 \pi)^{3}} \frac{1}{2 F_{\pi}^{2}} \frac{1}{\sqrt{\omega^{\prime} \omega}} & \frac{m^{\prime}+m}{2} \\
& \times\left(\frac{\Lambda^{2}}{\vec{q}^{2}+\Lambda^{2}}\right)^{2}\left(\frac{\Lambda^{2}}{\vec{q}^{2}+\Lambda^{2}}\right)^{2}
\end{aligned}
$$

\checkmark The strength of the potential is determined by pion decay constant.
\checkmark The relative couplings are fixed by chiral SU(3).
\checkmark In order to regularize loop integrals, dipole form factors are introduced.

$\checkmark K^{\text {bar }} \mathbf{N}$ potential model (parameter fit)

Our parameters -> cut-off of dipole form factor

Fit 1 : Λ (1405) pole position given by Dalitz (Model Dalitz)

$$
W_{\Lambda^{*}}=1406-i 25(\mathrm{MeV})
$$

Fit 2 : $\pi \Sigma$ invariant mass spectrum (Model Hemingway)
Hemingway, NPB253(1985).

Invariant mass

$$
W_{\Lambda^{*}}=1414-i 19(\mathrm{MeV})
$$

\checkmark We assume $\pi \Sigma$ scattering dominates the resonance region, and the cross section formula would give the invariant mass distribution.

$$
\frac{d \sigma}{d m} \propto\left|t_{\pi \Sigma-\pi \Sigma}\right|^{2} p_{C M}
$$

$\checkmark K^{\text {bar }} \mathbf{N}$ potential model (total cross sections)

Faddeev approach and

Variational approach

\checkmark Faddeev equations with separable potentials

Alt-Grassberger-Sandhas(AGS) Equations

$$
\begin{aligned}
X_{i j}\left(\vec{p}_{i}, \vec{p}_{j} ; W\right) & =\left(1-\delta_{i j}\right) Z_{i j}\left(\vec{p}_{i}, \vec{p}_{j} ; W\right) \\
& +\sum_{n \neq i} \int \vec{p}_{n} Z_{i n}\left(\vec{p}_{i}, \vec{p}_{n} ; W\right) \tau_{n}\left(\vec{p}_{n} ; W\right) X_{n j}\left(\vec{p}_{n}, \vec{p}_{j} ; W\right)
\end{aligned}
$$

- W:3-body scattering energy
$\mathbf{\square} \mathrm{i}(\mathrm{j})=1,2,3$ (Spectator particles)
$\boldsymbol{Z} Z\left(p_{i}, p_{j} ; W\right)$: Particle exchange potentials
$\boldsymbol{\square} \tau\left(\mathrm{p}_{\mathrm{n}} ; \mathrm{W}\right)$: Isobar propagators (2-body amplitude)

\checkmark Effective K ${ }^{\text {bar }} \mathbf{N}$ potential

\checkmark In most of the existing theoretical works, the resonance energy of strange dibaryon is predicted to lie below the KNN threshold and above the $\pi \Sigma \mathrm{N}$ threshold.
\checkmark The relevant states are continuum state in the $\pi \Sigma \mathrm{N}$ and $\pi \Lambda N$ Fock spaces and localized state in the KNN Fock space.
\checkmark It might be useful to construct the effective KN interaction by truncating the $\pi \mathrm{Y}$ channels for studies of the resonance energy of strange dibaryon.

Formula of effective KN potential

KN $-\pi \Sigma-\pi \Lambda$ coupled-channel \rightarrow effective KN single-channel

$$
v_{\bar{K} N-\bar{K} N}^{\text {eff }}=v_{\bar{K} N-\bar{K} N}+v_{\bar{K} N-\pi Y} G_{0}^{\pi}{ }^{Y}\left(1+t_{\pi Y-\pi Y}^{s i n g l e} G_{O}^{\pi Y}\right) v_{\pi Y-\bar{K} N}
$$

Effective KN potentials are used in variational approach.

\checkmark Effective K ${ }^{\text {bar }} \mathbf{N}$ interaction in three-body system

\square In Faddeev approach, all of particle echange potentitals in KNN- π YN coupled-channel can be taken into account in AGS equations.

\square In order to simulate the variational approach with AGS equations, we neglect $\pi-, \Sigma-, \Lambda$-, and N-exchange potentials in $\pi \mathrm{YN}$ channel.

\checkmark Effective K ${ }^{\text {bar }} \mathbf{N}$ interaction in three-body system

\checkmark In Faddeev approach, three-body dynamics are incorporated through the momentum of spectator particle in three-body free Green's function.
\rightarrow two-body scattering amplitude depends on the momentum of spectator particle.

\checkmark In variational approach, three-body dynamics through the momentum of spectator particle are neglected in $\pi \mathrm{YN}$ channel.

$$
\text { Approximate : } v_{a p p}^{\operatorname{eff}}(W) \longrightarrow G_{0}(W) \sim \frac{1}{W-M_{N}-E_{\pi}-E_{Y}+i \epsilon}
$$

\checkmark We can simulate variational approach in AGS formalism using approximate two-body scattering term where the spectator particle's momentum is neglected.

$工=$| $\tau_{\pi Y}\left(\vec{p}_{N} ; W\right):$ exact (Faddeev) |
| :--- |
| $\tau_{\pi Y}\left(\vec{p}_{N}=\overrightarrow{0} ; W\right):$ approximate |

\checkmark Summary of our framework

\checkmark Eigenvalue equation for Fredholm kernel

$$
Z(W) \tau(W)\left|\phi_{n}(W)>=\eta_{n}(W)\right| \phi_{n}(W)>
$$

$\eta_{n}\left(W_{\text {pole }}\right)=1 \Rightarrow 3$-body resonance pole at $W_{\text {pole }}$

$$
W_{\text {pole }}=-B-i \Gamma / 2
$$

Similar to $\pi N N, \eta N N, K^{-d}$ studies. (Matsuyama, Yazaki,)

Numerical results

\checkmark Resonance poles of three-body K ${ }^{\text {bar }}$ NN system

\checkmark Resonance poles of three-body K ${ }^{\text {bar }}$ NN system

\checkmark Reason of less binding energies

\checkmark When three-body dynamics is fully handled in AGS equations, cusp structure of the twobody amplitude appears at $\pi \Sigma \mathrm{N}$ threshold.
\checkmark In approximate treatment of two-body amplitude like variational approach, since the $\pi \Sigma$ Fock space is truncated into the KN Fock space, the threshold behavior of the exact amplitude is missing.
\checkmark For deeply bound state, the threshold behavior is enhanced.

\checkmark KN interaction dependences of KNN poles

\checkmark We artificially vary the strength of the KN-KN potential.
\checkmark In Faddeev approach, KNN quasi-bound state becomes bound state.
\checkmark In variational approach where the momentum of spectator is neglected, the KNN quasibound state becomes virtual state.

\checkmark Summary

\checkmark We compare variational approach with Faddeev approach by using the approximate treatment of two-body KN amplitude.
\checkmark We find the different pole energies corresponding to KNN quasi-bound state for each approach.
\checkmark KNN state becomes the bound state as increasing the strength of KN interaction in Faddeev approach, meanwhile KNN state becomes virtual state in variational approach.
\checkmark Full treatment of three-body dynamics plays an essential role in understanding the KNN $-\pi \mathrm{YN}$ coupled-channel deeply quasi-bound state.

Thank you very much for your attention.

$\checkmark \underline{K}^{\text {bar }} \mathbf{N}$ potential model (parameter fit)

arbitrary unit
with assumption

$$
\frac{d \sigma}{d m} \propto\left|t_{\pi \Sigma-\pi \Sigma}\right|^{2} p_{C M}
$$

$$
W_{\wedge^{*}}=1414-i 19(\mathrm{MeV})
$$

\checkmark Strange dibaryon in chiral unitary approach

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { Energy-dependent potential } \\
\text { (E-dep.) }
\end{array} \\
V_{i j}\left(q, q^{\prime}\right) \rightarrow V_{i j}(E)=-\frac{C_{i j}}{2 F_{\pi}^{2}}\left(2 E-M_{i}-M_{j}\right) \\
\text { e.g., Oset, Ramos, NPA635, 99 (98) }
\end{array}
\end{gathered}
$$

$$
\begin{array}{r}
V_{i j}\left(q, q^{\prime}\right) \rightarrow \quad V_{i j}\left(q, q^{\prime}\right) \times g_{i}(q) g_{j}\left(q^{\prime}\right) \\
g_{i}(q)=\left(\frac{\Lambda_{i}^{2}}{\Lambda_{i}^{2}+q^{2}}\right)^{2}
\end{array}
$$

$\mathrm{K}^{\text {bar }} \mathrm{N}$-sY scattering

\checkmark Strange dibaryon in chiral unitary approach

Formal solution of AGS equation

AGS Equation

$X(W)=Z(W)+\underset{\text { Fredholm kernel }}{Z(W) \tau(W)} X(W)$

\checkmark Eigenvalue equation for Fredholm kernel

$$
Z(W) \tau(W)\left|\phi_{n}(W)>=\eta_{n}(W)\right| \phi_{n}(W)>
$$

\checkmark Formal solution for 3-boby amplitude

$$
X(W)=\sum_{n} \frac{\left|\phi_{n}(W)><\tilde{\phi}_{n}(W)\right| Z(W)}{1-\eta_{n}(W)}
$$

$\eta_{n}\left(W_{\text {pole }}\right)=1 \Longrightarrow$ 3-body resonance pole at $\mathrm{W}_{\text {pole }}$

\checkmark Pole approximation of KN amplitude

$$
\tau(E)=\frac{N(E)}{D(E)} \sim \underbrace{\frac{N\left(z_{R}\right)}{D^{\prime}\left(z_{R}\right)} \frac{1}{E-z_{R}}}_{\text {Pole term }}-\underbrace{\frac{N\left(z_{R}\right) D^{\prime \prime}\left(z_{R}\right)}{2 D^{\prime}\left(z_{R}\right)^{2}}+\frac{N^{\prime}\left(z_{R}\right)}{D^{\prime}\left(z_{R}\right)}}_{\text {Constant term }} \quad\left(D\left(z_{R}\right)=0\right)
$$

\checkmark Effective K ${ }^{\text {bar }} \mathbf{N}$ potential

$\mathrm{K}^{\text {bar }} \mathrm{N}-\pi \Sigma-\pi \Lambda$ coupled-channel $\rightarrow \mathrm{K}^{\text {bar }} \mathrm{N}$ single-channel

$$
\begin{aligned}
t_{\bar{K} N-\bar{K} N} & =v_{\bar{K} N-\bar{K} N}+v_{\bar{K} N-\bar{K} N} G_{0}^{\bar{K}} N_{t_{\bar{K}} N-\bar{K} N}+v_{\bar{K} N-\pi} G_{0}^{\pi Y} t_{\pi Y-\bar{K} N} \\
& =v_{\bar{K} N-\bar{K} N}+v_{\bar{K} N-\bar{K} N} G_{0}^{\mathbb{R} N} t_{\bar{K} N-\bar{K} N}
\end{aligned}
$$

$$
v_{\bar{K} N-\bar{K} N}^{\text {eff }}=v_{\bar{K} N-\bar{K} N}+v_{\bar{K} N-\pi Y} G_{0}^{\pi}{ }^{Y}\left(1+t_{\pi Y-\pi Y}^{s i n g l e} G_{0}^{\pi Y}\right) v_{\pi Y-\bar{K} N}
$$

NN potential -> 2-term Yamaguchi type

$$
V_{1 S_{0}}\left(\vec{p}^{\prime}, \vec{p}\right)=\underbrace{C_{A} g_{A}(\vec{p}) g_{A}(\vec{p})}_{\text {Atractive }}+\underset{\text { Repulsive core }}{C_{R} g_{R}\left(\vec{p}^{\prime}\right) g_{R}(\vec{p})}
$$

	$\Lambda_{R}(\mathrm{MeV})$	$\Lambda_{A}(\mathrm{MeV})$	$C_{R}\left(\mathrm{MeV} \mathrm{fm}^{3}\right)$	$C_{A}\left(\mathrm{MeV} \mathrm{fm}^{3}\right)$
Relativistic	1144	333	5.33	5.61

