Kaon-Nucleus Potential and the In-Flight (K⁻, N) Reaction Mechanism

T. Kishimoto RCNP and Physics Dept. Osaka University

K-nucleus interaction

- Atomic X ray data: two solutions (Batty, Friedman, Gal)
 - deep ~180 MeV and/or shalow ~80 MeV
- Λ(1405)
 K⁻ p X ray data
- K⁻ production in HI reaction: attractive
- Recent experiments
 - structure in deeply bound region (potential ?)
 - FINUDA, KEK, GSI
- Reaction mechanism
 - Theory: structure
 - Experiment: reaction

in-flight (K⁻,N) reactions

 \star predictable cross section

HYP-X

★Little background (p_N~1.3GeV/c for p_K~1 GeV/c)

Missing mass spectroscopy (Excitation energy spectra vs DWIA)

 Energy integrated cross section ~ N_{eff} x (dσ/dΩ)_{elem} =10~20 mb/sr

KEK-PS E548

- (K⁻,p) and (K⁻,n) reactions on
 - -¹⁶O (water target)
 - ¹²C (graphite and CH₂ targets)
- Improvements over BNL experiment
 - Proton (KURAMA spectrometer): 12MeV(σ)@BE=150MeV
 - Neutron counter: ~20msr, 10MeV(σ)@BE=150MeV
 - Decay counter (Nal array): ~0.5 of 4π

Beam line and spectrometer

 p_{K} =1 GeV/c (p_{N} =1.2~1.3 GeV/c) 10k K⁻ for 3Tp (~1/10 of BNL) Trigger rate ⇒ ~500/spill ~1G K⁻ on Target

Liquid scintillator + plastic scintillator for Neutrons

HYP-X

VZH is to identify vertex to give neutron flight length

Cross section and N_{eff}

Solid line: best fit Re(V)=-190MeV Im(V)=-40 MeV

Dotted line: Re(V)=-60 MeVIm(V)=-60 MeV

Solid line: best fit Re(V)=-160MeV Im(V)=-50 MeV

Dotted line: Chiral Re(V)=-60 MeVIm(V)=-60 MeV

0

Effective nucleon number N_{eff}

- $N_{eff} = \sigma({}^{12}C(K^{-}, N)) / \sigma(p(K^{-}, N)) \sim 1.41$ $\sigma \sim 20 \text{ mb/sr}^{20}$
- calculation (40 mb for $\sigma(KN)$ and $\frac{1500}{1000}$ - N_{eff}(Eik)~1.49 (with A-1 correction) $\frac{500}{1000}$
- N_{eff}(¹⁶O)~1.94 (exp), ~1.72(cal)
- Background process
 - Fitting of -BE=100~200 MeV region
 - quadratic function
 - multi-step?

We are seeing (K-, N) reaction not backgrounds 13

2500

2000

Distortion due to tagging

Inclusive p(K-, p)Xmissing mass spectra on CH_2 and C targets. Kaon peak is seen.

Potential depth

	obs(MeV)	cal(MeV)
¹² C(K⁻, n)	~190	190
¹² C(K⁻, p)	~160	158
¹⁶ O(K⁻, n)	~180	190
¹⁶ O(K⁻, p)	~160	166

If potential depth $\propto N_{I=0}/A$

Attraction is from I=0 (K⁻ p, K⁰n)

$$N_{I=0} = \sum_{i=1}^{A} \left(\frac{1}{4} - \tau_K \bullet \tau_N\right)$$
$$= \frac{A}{4} - \tau_K \bullet T_A$$

Isospin of	N _{I=0}	
kaonic nuclei	¹⁶ O(K⁻,N)	¹² C(K⁻, N)
I=0	4.5	3.5
(K-,p) I=1	3.5	2.5
(K⁻,n) I=0,1	4	3

Summary

- Missing mass spectra of ¹²C(K⁻, N) indicate
 - ${}^{12}C (K^{-}, n): V_{r} \sim 190 MeV V_{i} \sim -40 MeV,$
 - ¹²C (K⁻, p): $V_r \sim 160 \text{MeV}$ $V_i \sim -50 \text{ MeV}$,
- Effective nucleon number

 N_{eff}(¹²C)~1.41, N_{eff}(¹⁶O)~1.94: Eikonal distortion
 BG process: unlikely (~20 mb/sr)
- Isospin dependence: attraction is I=0 pair
- ¹²C results in PTP 118, 181 (2007)
- ${}^{16}O(K^{-}, N)$ and ${}^{12}C(K^{-}, N)$ are consistent

Thanks

