HYP-X, Tokai, Japan, Sep. 17, 2009

³He(in-flight K⁻, n) spectrum and moving pole of a deeply-bound K⁻pp state in complex energy plane

<u>Takahisa Koike</u> RIKEN, Nishina Center

Toru Harada Osaka Electro-Communication Univ.

"Kpp" is suggested to be the lightest and most fundamental kaonic nuclei, but the theoretically-calculated and experimentallymeasured B.E. and Γ are not converged!

Theory

- YA: Yamazaki, Akaishi
- SGM: Shevchenko, Gal, Mares
- IS: Ikeda, Sato
- DHW: Dote, Hyodo, Weise
- IKMW: Ivanov, Kienle et al.
- NK: Nishikawa & Kondo
- AYO: Arai, Yasui, Oka
- YJNH: Yamagata, Jido et al.
- WG: Wycech, Green,

Experiment

- FINUDA
- OBELIX
- DISTO

◆ New measurement for searching "K⁻pp"

M. Iwasaki, T. Nagae *et al.*, **J-PARC E15 experiment**

Our purpose:

Theoretical calculation of ³He(In-flight K⁻, n) inclusive/ semi-exclusive spectra within the DWIA framework using Green's function method.

- Theoretical calculations of ³He(In-flight K⁻, n) reaction spectrum for J-PARC E15 experiment
 - Our approach:

Phenomenological optical potential model using phase space factor

- \rightarrow Examine a possible evidence for the various cases.
- Refs. T. Koike & T. Harada, Phys. Lett. B652 (2007) 262-268. T. Koike & T. Harada, Nucl. Phys. A804 (2008) 231-273. T. Koike & T. Harada, arXiv: 0906.3659 [nucl-th].
- Other approach within a similar framework:
 Optical potential model based on chiral unitary approach

Ref. J. Yamagata-Sekihara et al., arXiv: 0812.4359 [nucl-th].

◆ <u>D</u>istorted-<u>Wave</u> <u>Impulse</u> <u>Approximation</u> (DWIA)

Distorted-Wave Impulse Approximation (DWIA)

In charge basis,

◆ <u>D</u>istorted-<u>Wave</u> <u>Impulse</u> <u>Approximation</u> (DWIA)

Morimatsu & Yazaki's Green function method Prog.Part.Nucl.Phys.<u>33(1994)679.</u>

$$S(E) = -\frac{1}{\pi} \operatorname{Im} \left[\sum_{\alpha,\alpha'} \int d\mathbf{r} d\mathbf{r'} f_{\alpha}(\mathbf{r}) G_{\alpha,\alpha'}(E;\mathbf{r},\mathbf{r'}) f_{\alpha'}(\mathbf{r'}) \right]$$

Green's function K pp system
 \rightarrow employing K - "pp" optical potential
recoil effect

$$f_{\alpha}(\mathbf{r}) = \chi^{(-)*} \left(\mathbf{p}_{n}, \left(\frac{M_{pp}}{M_{3He}} \mathbf{r} \right) \chi^{(+)} \left(\mathbf{p}_{K^{-}}, \frac{M_{pp}}{M_{3He}} \mathbf{r} \right) < \alpha |\psi_{n}(\mathbf{r})| i >$$

Distorted wave for
incoming(+)/outgoing(-) particles
 \rightarrow Eikonal approximation

$$M_{M}(\mathbf{r}) = \frac{1}{\pi} \operatorname{Im} \left[\sum_{\alpha,\alpha'} \int d\mathbf{r} d\mathbf{r'} f_{\alpha}(\mathbf{r}) G_{\alpha,\alpha'}(E;\mathbf{r},\mathbf{r'}) f_{\alpha'}(\mathbf{r'}) \right]$$

neutron wave function

$$M_{M}(\mathbf{r}) = \chi^{(-)*} \left(\mathbf{p}_{n}, \left(\frac{M_{pp}}{M_{3He}} \mathbf{r} \right) \chi^{(+)} \left(\mathbf{p}_{K^{-}}, \frac{M_{pp}}{M_{3He}} \mathbf{r} \right) < \alpha |\psi_{n}(\mathbf{r})| i >$$

$$M_{M}(\mathbf{r}) = \frac{1}{\pi} \sum_{\alpha,\alpha'} \int d\mathbf{r} d\mathbf{r'} d\mathbf{r'} f_{\alpha}(\mathbf{r}) f_{\alpha'}(\mathbf{r'}) f_{\alpha'}(\mathbf{r'})$$

Phenomenological K⁻-"pp" optical potential

$$U^{\text{opt}}(E; \mathbf{r}) = (V_0 + i W_0 f(E)) \exp[-(\mathbf{r}/b)^2]$$

1-nucleon K⁻ absorption

• 2-nucleon K⁻ absorption K⁻pp \rightarrow K⁻ + "pp" \rightarrow Y + N : $f_2(E)$

$$f(E) = \frac{B_1^{(\pi \Sigma N)} f_1^{\Sigma}(E)}{= 0.7} + \frac{B_1^{(\pi \Lambda N)} f_1^{\Lambda}(E)}{= 0.1} + \frac{B_2^{(YN)} f_2(E)}{= 0.2}$$

Refs. J. Mares, E. Friedman, A. Gal, PLB606 (2005) 295.
D. Gazda, E. Friedman, A. Gal and J. Mares, PRC76 (2007) 055204.
J. Yamagata, H. Nagahiro, S. Hirenzaki, PRC74 (2006) 014604.

Single-channel Green's function

$$\{(\underbrace{E}_{\text{Real}} V_{\text{Coul}}(\boldsymbol{r}))^2 + \boldsymbol{\nabla}^2 - \mu^2 - 2\,\mu\,\underline{U^{\text{opt}}(E;\boldsymbol{r})}\}\,G(E;\boldsymbol{r},\boldsymbol{r}') = \,\delta^3(\boldsymbol{r}-\boldsymbol{r}'),$$

• Determing pole position

The Klein-Gordon equation is solved self-consistently in complex *E*-plane;

$$\{\underbrace{\omega(E)}_{\text{Complex}} - V_{\text{Coul}}(\boldsymbol{r}))^2 + \nabla^2 - \mu^2 - 2\,\mu\,\underline{U^{\text{opt}}(E;\boldsymbol{r})}\}\,\Phi(E;\boldsymbol{r}) = 0,$$

$$\blacksquare \quad \begin{cases} \operatorname{Re} \ \omega(E) = -B.E. = E, \\ \operatorname{Im} \ \omega(E) = -\Gamma/2 \end{cases}$$

B.E. and Γ are determined from these relations.

We consider the following 4 cases of the calculations/experiment;

♦ Parameters of our optical potentials

	V ₀	\mathbf{W}_{0}	$B_2^{(YN)} = 0.0$	$B_2^{(YN)} = 0.2$
	(MeV)	(MeV)	B.E. Γ (MeV) (MeV)	B.E. Γ (MeV) (MeV)
Α	-237	-128	22 70	15 92
B	-292	-107	48 61	45 82
С	-344	-203	70 110	59 164
D	-404	-213	116 19	115 67

Fitted values

***** *b* = 1.09 fm for all potentials; the range effect is small.

Employed K⁻-"pp" optical potentials

Calculated results of inclusive spectrum

Decomposition of strength function into K⁻ escape / K⁻ conversion part

Im $G = (1 + G^{\dagger}U^{\dagger})(\operatorname{Im} G_0)(1 + UG) + G^{\dagger}(\operatorname{Im} U)G$, where $G = G_0 + G_0 U G$, G_0 ; Free Green's function

$$S = S^{\text{esc}} + S^{\text{con}}$$

$$\begin{cases} S^{\text{esc}} = -\frac{1}{\pi} F^{\dagger} (1 + G^{\dagger} U^{\dagger}) (\text{Im} G_0) (1 + UG) F; \text{ K}^{\bullet} \text{ escape} \\ S^{\text{con}} = -\frac{1}{\pi} F^{\dagger} G^{\dagger} (\text{Im} \underline{U}) GF; \text{ K}^{\bullet} \text{ conversion} \\ \bullet \text{ optical potential} \end{cases}$$

★ K⁻ conversion spectrum is actually measured in J-PARC experiment.

Decomposition into semi-exclusive spectra

• Definition of D(E)

$$\{(\omega(E) - V_{\text{Coul}}(r))^2 + \nabla^2 - \mu^2 - 2\,\mu\,U^{\text{opt}}(E;r)\}\,\Phi(E;r) = 0,$$

E-dependent complex eigenvalue

• Examples of the relation between D(E) and $\omega(E)$

• Pole trajectory $\omega(E)$ in complex *E*-plane

Validity of E-dependence of our optical potential

- Within the K^{bar}NN <u>single channel</u> picture, the spectrum shape can be understood by relating to the trajectory of the moving pole in the complex *E*-plane, rather than the static values of *B.E.* and *Γ*.
- The *E*-dependence of the optical potential determines the trajectory of the moving pole.
- The *E*-dependence of our phenomenological potential is qualitatively agree with that in the $K^{bar}NN - \pi \Sigma N$ Faddeev calculation.