$K^{bar}N$ and $\pi\Sigma$ Amplitudes in One-Hadron-Exchange Potential Model

Gifu Univ., Nihon Univ. and Riken

S. Shinmura, M. Wada, Y. Akaishi and M. Obu

(Hyp-X @ Tokai.Ibaraki 090914-18)

Our Model of BB and MB potentials

- The One-Hadron-Exchange mechanism
- The SU(3)-symmetric coupling constants
- Mesons and Baryons with Physical Masses and Widths
- Gaussian Source Functions (Form Factors)

Our BB potentials describe interactions between all octet baryon pairs(From NN to ΞΞ) Funabashi-Gifu Potential

GSOBEP

As an extension of our BB potential model, we propose meson-baryon(MB) potentials:

All parameters (coupling constants, etc) determined in BB potentials are fixed in MB potentials.

Meson-Baryon Potentials

Mesons : Pseudoscalar Mesons Baryons : Octet Baryons

S= 1 sector: KN

S= 0 sector: $\pi N - \eta N - K\Lambda - K\Sigma$

S= -1 sector: $\pi \Lambda - \pi \Sigma - \overline{K}N - \eta \Lambda - \eta \Sigma$

S= -2 sector: $\pi \Xi - \eta \Xi - \overline{K} \Lambda - \overline{K} \Sigma$

S= -3 sector: $\overline{\mathbf{K}}\Xi$

Interaction Mechanisms

Baryon-Pole Diagrams give Separable Potentials

SU(3) model for Baryons and Mesons

1. Octet baryons in the SU(3) model:

$$\Psi_8^B = \begin{bmatrix} \Sigma^0/\sqrt{2} + \Lambda/\sqrt{6} & \Sigma^+ & p \\ \Sigma^- & -\Sigma^0/\sqrt{2} + \Lambda/\sqrt{6} & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda \end{bmatrix}$$

2. Octet pseudoscalar mesons in the SU(3) model:

$$\Phi_8^P = \begin{bmatrix} \pi^0 / \sqrt{2} + \eta_8 / \sqrt{6} & \pi^+ & K^+ \\ \pi^- & -\pi^0 / \sqrt{2} + \eta_8 / \sqrt{6} & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}} \eta_8 \end{bmatrix}$$

3. Octet scalar mesons in the SU(3) model:

$$\Phi_8^S = \begin{bmatrix} a^0/\sqrt{2} + f_0/\sqrt{6} & a^+ & \kappa^+ \\ a^- & -a^0/\sqrt{2} + f_0/\sqrt{6} & \kappa^0 \\ \kappa^- & \bar{\kappa}^0 & -\sqrt{\frac{2}{3}}f_0 \end{bmatrix}$$

4. Octet vector mesons in the SU(3) model:

$$\Phi_8^V = \begin{bmatrix} \rho^0 / \sqrt{2} + \phi / \sqrt{6} & \rho^+ & K^{*+} \\ \rho^- & -\rho^0 / \sqrt{2} + \phi / \sqrt{6} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & -\sqrt{\frac{2}{3}}\phi \end{bmatrix}$$

5. Singlet mesons:

 $\Phi_1^P=\eta',\qquad \Phi_1^S=\sigma,\qquad \Phi_1^V=\omega$

Interaction Lagrangians in the SU(3) model

Definitions of baryon-baryon-meson coupling constants:

 $\mathcal{L}_{BBm} = g_{m1}^{(8)} \operatorname{Tr}[\bar{\Psi_8^B} \Phi_8^m \Psi_8^B] + g_{m2}^{(8)} \operatorname{Tr}[\bar{\Psi_8^B} \Psi_8^B \Phi_8^m] + g_m^{(1)} \operatorname{Tr}[\bar{\Psi_8^B} \Psi_8^B] \Phi_1^m]$ where, m = P, S, V.

Definition of meson-meson coupling constants:

 $\begin{aligned} \mathcal{L}_{PPm} &= g_{PPm1}^{(888)} \operatorname{Tr}[(\Phi_8^P)^{\dagger} \Phi_8^P \Phi_8^m] + g_{PPm2}^{(888)} \operatorname{Tr}[(\Phi_8^P)^{\dagger} \Phi_8^m \Phi_8^P] + g_{PPm}^{(881)} \operatorname{Tr}[(\Phi_8^P)^{\dagger} \Phi_8^P] \Phi_1^m] \\ &+ g_{PPm}^{(818)} \operatorname{Tr}[(\Phi_8^P)^{\dagger} \Phi_8^m] \Phi_1^P] + g_{PPm}^{(188)} (\Phi_1^P)^{\dagger} \operatorname{Tr}[\Phi_8^P \Phi_8^m] + g_{PPm}^{(111)} (\Phi_1^P)^{\dagger} \Phi_1^P \Phi_1^m \\ &\text{where, } m = S, V. \end{aligned}$

Symmetric(α =0) for PPS α =F/(F+D)Antisymmetric(α =1) for PPV

Forms of Three-Meson Coupling

ps meson-ps meson-vector meson coupling

$$L = g_{ppv} \phi_v^{\mu} \phi_p \partial_{\mu} \phi_p$$

ps meson-ps meson-scalar meson coupling

$$L = g_{pps} m_{\pi} \phi_s \phi_p \phi_p$$

or

$$L = -\frac{g_{pps}}{m_{\pi}} \phi_s \partial_{\mu} \phi_p \partial^{\mu} \phi_p$$

The latter \leftarrow Low-energy theorem (Soft pion limit)

Contributions for πN and KN potentials

 πN : σ -ex, f_0 -ex

ρ-ех

- N-ex, ∆-ex, N^{*}(1440)-ex, S₁₁(1567)-ex
- N-pol, ∆-pol, N^{*}(1440)-pol, S₁₁(1567)-pol

We determine the coupling constants and form factors so as to reproduce the experimental data of πN and KN scattering

Result for πN and KN scatt

πN scattering lengths

	calc	ехр			
S11	0.2470	0.2473 ± 0.0043			
S31	-0.1378	-0.1444 ± 0.0057			
P11	-0.2356	-0.2368 ± 0.0058			
P31	-0.1333	-0.1316 ± 0.0058			
P13	-0.0994	-0.0877 ± 0.0058			
P33	0.6254	0.6257 ± 0.0058			
fm**(2L+1)					

 $g \pi \pi \sigma = -0.053$ $g \pi \pi f_0 = 0.080$ (Very weak σ-ex, f₀-ex)

KN scattering lengths					
	calc	ехр			
S01	-0075	$+0.00\pm0.02$			
S11	-0.353	-0.33 ± 0.02			
P01	+0.148	$+0.08\pm0.02$			
P11	-0.098	-0.16 ± 0.02			
P03	-0.006	-0.13 ± 0.02			
P13	0.030	$+0.07\pm0.02$			
fm **(2L +1)					

We obtain also a reasonable fit for KN.

πN Phase Shifts Exp(single-energy analysis) Calculations

KN Phase Shifts Exp(single-energy analysis) Calculations

KN S-wave potential in our model

There is no adjustable parameter !! (S-wave KN potential is determined by πN and KN potentials.)

Isospin=0 channels

 $\pi\Sigma-KN-\eta\Lambda-K\Xi-\eta'\Lambda$

Isospin=1 channels

 $\pi \Lambda - \pi \Sigma - \overline{K} N - \eta \Sigma - K \Xi - \eta' \Sigma$

K⁻**p** Reaction Cross sections

Fairly good agreement with experimental data

but

the Attraction in Isospin=0 is too strong.

$\pi^0 \Sigma^0$ and $\pi \Lambda$ Elastic Cross Sections(S-wave)

Strong Attraction! (a factor \sim 0.7 is needed) (mainly from ω -ex)

πΣ(I=0) Mass Spectrum

Our model reproduce the $\pi\Sigma$ mass spectrum by a factor around 0.70.

π Σ S-Wave Phase Shifts (Isospin=0)

Branching Ratios at K⁻p Threshold

 $\gamma = \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \pi + \Sigma^{-}) / \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \pi - \Sigma^{+})$ $\mathbf{Rc} = \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \pi + \Sigma^{-}, \pi - \Sigma^{+}) / \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \text{all inelastic})$ $\mathbf{Rn} = \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \pi 0\Lambda) / \Gamma(\mathsf{K}^{-}\mathsf{p} \rightarrow \text{neutral states})$

	Ехр	1.00V	0.75V	0.70V	0.65V
γ	2.361 ± 0.04	0.410	2.130	1.487	1.143
Rc	0.664 ± 0.011	0.373	0.639	0.654	0.658
Rn	0.189 ± 0.015	0.951	0.139	0.049	0.015

The ratios, γ and \mathbf{R}_n are much sensitive to the interaction.

0.75V is best

K⁻**p** scattering length

Summary

OWe propose a unified potential model of baryon-baryon and meson-baryon interactions.

Our model predicts a strongly attractive $K^{bar}N$ potential. Quantitatively, this attraction is too strong to describe $\Lambda(1405)$ as a quasibound state.

(0.70-0.75) V gives fairly reasonable results

OUsing (0.70-0.75) V, we find A single pole in K^{bar}N- $\pi\Sigma$ coupled-channel calculation No pole in $\pi\Sigma$ single channel calculation This pole corresponds to a quasibound state of K^{bar}N.

To remove the artificial factor=0.70-0.75, Conbined analysis of BB and MB potentials are in progress.

K⁻**p** Reaction Cross sections

Solid : 0.65V Dotted : 0.70V Dash-dotted : 0.75V