A Theoretical Determination of N_{nn}/N_{np} in Hypernuclear Non–Mesonic Weak Decay

E. Bauer

Departamento de Física, Universidad Nacional de La Plata,

and Instituto de Física La Plata, CONICET,

La Plata 1900, Argentina

G. Garbarino

Dipartimento di Fisica Teorica, Università di Torino, I-10125 Torino, Italy

Introduction to Λ -Weak Decay in Hypernuclei

Outline of the talk

- Introduction to Λ -Weak Decay in Hypernuclei
- Theoretical Framework: the Microscopic Model

Outline of the talk

- Introduction to Λ -Weak Decay in Hypernuclei
- Theoretical Framework: the Microscopic Model
- Results & Comparison with Data

Outline of the talk

- Introduction to Λ -Weak Decay in Hypernuclei
- Theoretical Framework: the Microscopic Model
- Results & Comparison with Data
- Conclusions

Weak decay modes of Λ -hypernuclei

Mesonic decay, $\Gamma_M = \Gamma_{\pi^-} + \Gamma_{\pi^0}$,

- dominant in free space
- blocked by Pauli Principle

only in hypernuclei

Λ

 dominant for medium and heavy hypernuclei

N

$$\Gamma_T = \Gamma_M + \Gamma_{NM}$$

Non-mesonic weak decay

One-nucleon induced: $\Gamma_1(\Lambda N \to nN)$,

$$\Gamma_1 \equiv \Gamma_n(\Lambda n \to nn) + \Gamma_p(\Lambda p \to np)$$

Two-nucleon induced: $\Gamma_2(\Lambda NN \rightarrow nNN)$,

 $\Gamma_2 \equiv \Gamma_{nn}(\Lambda nn \to nnn) + \Gamma_{np}(\Lambda np \to nnp) + \Gamma_{pp}(\Lambda pp \to npp)$

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 4/1

Some hypernuclear observables

The hypernuclear lifetime is given in terms of the mesonic $(\Gamma_M = \Gamma_{\pi^-} + \Gamma_{\pi^0})$ and non–mesonic decay widths $(\Gamma_{NM} = \Gamma_1 + \Gamma_2)$,

$$\tau = \hbar/\Gamma_T = \hbar/(\Gamma_M + \Gamma_{NM})$$

Almost independent on FSI

The spectra of the emitted particles (nucleons, pions and photons), *i.e.* N_{nn} and N_{np} , where

$$\frac{\Gamma_n}{\Gamma_p} \equiv \frac{N_{nn}^{\text{wd}}}{N_{np}^{\text{wd}}} \neq \frac{N_{nn}}{N_{np}}$$

Strongly dependent on FSI

Link between theory and experiment

- When FSI are important, a theoretical model for the FSI is required to connect theory with experiment.
 - Intranuclear Cascade Code (INC)
 - Microscopic Model

In the present contribution we discuss a microscopic model to describe the observables N_{nn}/N_{np} and the spectra of emitted protons and neutrons

- Non-relativistic nuclear matter is employed
- Connection with particular hypernuclei is done by means of the Local Density Approximation (LDA)

$$\Gamma_{NM} = \sum_{f} |\langle f | V^{\Lambda N \to NN} | 0 \rangle|^2 \delta(E_f - E_0)$$

$$\Gamma_{NM} = \sum_{f} |\langle f | V^{\Lambda N \to NN} | 0 \rangle|^2 \delta(E_f - E_0)$$

- $|0\rangle$:hypernuclear ground state, with energy E_0
- $V^{\Lambda N} \rightarrow NN$: two-body weak transition potential, including the exchange of the complete octets of pseudoscalar and vector mesons (π , η , K, ρ , ω and K^*)

$$\Gamma_{NM} = \sum_{f} |\langle f | V^{\Lambda N \to NN} | 0 \rangle|^2 \delta(E_f - E_0)$$

- $|0\rangle$:hypernuclear ground state, with energy E_0
- $V^{\Lambda N \to NN}$: two-body weak transition potential, including the exchange of the complete octets of pseudoscalar and vector mesons (π , η , K, ρ , ω and K^*)
- $|\dot{f}\rangle$: final state, with energy E_f

•
$$|f
angle=|2p1h
angle$$
 for Γ_1

•
$$|f
angle=|3p2h
angle$$
 for Γ_2

Microscopic model for N_N and N_{NN}

$$N_n = 2\bar{\Gamma}_n + \bar{\Gamma}_p + 3\bar{\Gamma}_{nn} + 2\bar{\Gamma}_{np} + \bar{\Gamma}_{pp} + \sum_{i,i';j} N_{j(n)} \bar{\Gamma}_{i,i' \to j},$$

$$N_p = \bar{\Gamma}_p + \bar{\Gamma}_{np} + 2\bar{\Gamma}_{pp}, + \sum_{i,i';j} N_{j(p)} \bar{\Gamma}_{i,i' \to j},$$

$$N_{nn} = \bar{\Gamma}_n + 3\bar{\Gamma}_{nn} + \bar{\Gamma}_{np} + \sum_{i,i';j} N_{j(nn)} \bar{\Gamma}_{i,i' \to j},$$

$$N_{np} = \bar{\Gamma}_p + 2\bar{\Gamma}_{np} + 2\bar{\Gamma}_{pp} + \sum_{i,i';j} N_{j(np)} \bar{\Gamma}_{i,i' \to j},$$

$$N_{pp} = \bar{\Gamma}_{pp} + \sum_{i,i';j} N_{j(pp)} \bar{\Gamma}_{i,i' \to j}.$$

where, $\bar{\Gamma}\equiv\Gamma/\Gamma_{NM}$

From E.B. Nucl. Phys. A796 (2007) 11

Employed Feynman diagrams

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 9/1

The *pp*-Feynman diagram,

expressed in terms of it sum of Goldstone diagrams:

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 10/1

Results & Comparison with Data

- $V^{\Lambda N \rightarrow NN}$ is represented by the exchange of the π , η , K, ρ , ω and K^* mesons, with the coupling constants and cut–off parameters deduced from the Nijmegen soft–core interaction NSC97f of V. G. J. Stoks and Th. A. Rijken, Phys. Rev. **C 59** (1999) 3009; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, *ibid.* 59 (1999) 21.
- For V^{NN} we have used a $V_{\pi+\rho}$ -potential with the addition of a g'-Landau-Migdal parameter. (See for instance, E. Oset, H. Toki and W. Weise, Phys. Rept. **83** (1982) 281). We have used, g' = 0.7.

Results & Comparison with Data

Table 1

KEK data from M. J. Kim et al., Phys. Lett. **B 641**, 28 (2006), where $T_N^{\text{th}} = 30$ and $\cos(\theta_{NN}) \leq -0.8 T_N^{\text{th}}$ is given in MeV.

$^{12}_{\Lambda}{ m C}$					
$T_N^{ m th}$	$\cos(heta_{NN})$	Γ_n/Γ_p	$(N_{nn}/N_{np})^0$	$(N_{nn}/N_{np})^{no-int}$	N_{nn}/N_{np}
0.	≤ 1.	0.321	0.321	0.392	0.372
30.	$\leqslant -0.8$		0.336	0.376	0.374
	KEK-E508				0.40 ± 0.10

Table 2

Results are given in units of $\Gamma^0 = 2.52 \cdot 10^{-6}$ eV.

$^{12}_{\Lambda}{ m C}$									
	T_N^{th}	$\cos(heta_{NN})$	1N-ind	pp	ph	hh	pp'	ph'	hh'
N_{nn}	0.	≤ 1.	0.18	0.32	-0.05	0.31	0.14	-0.12	0.14
	30.	$\leqslant -0.8$	0.17	0.04	-0.01	0.05	0.02	-0.01	0.02
N_{np}	0.	≤ 1.	0.57	0.94	-0.04	0.61	0.32	-0.15	0.27
	30.	$\leqslant -0.8$	0.50	0.10	-0.01	0.09	0.04	-0.02	0.04

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 12/1

Single nucleon spectra

Data have been taken from S. Okada et al., Phys. Lett. **B 597**, 249 (2004).

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan, September 15, 2009 – p. 13/

From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.
- It is the spectra of emitted particles rather than the N_{nn}/N_{np} -ratio, the magnitude which should be reproduced.

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.
- It is the spectra of emitted particles rather than the N_{nn}/N_{np} -ratio, the magnitude which should be reproduced.
- From the comparison with data, the microscopic model shows a clear improvement over the spectra without FSI.

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.
- It is the spectra of emitted particles rather than the N_{nn}/N_{np} -ratio, the magnitude which should be reproduced.
- From the comparison with data, the microscopic model shows a clear improvement over the spectra without FSI.
- Our results suggest that quantum-interference terms are not important

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.
- It is the spectra of emitted particles rather than the N_{nn}/N_{np} -ratio, the magnitude which should be reproduced.
- From the comparison with data, the microscopic model shows a clear improvement over the spectra without FSI.
- Our results suggest that quantum-interference terms are not important
- The next steps: the microscopic model requires improvements and further studies:
 - a more realistic nuclear residual interaction,
 - the inclusion of the Pauli exchange terms in 2N-ind,
 - the study of the effect of the $\Delta(1232)$ over the spectra,
 - the evaluation of the double coincidence emission spectra.

- From the experimental spectra of emitted particles it is not straightforward to extract the values for the decay widths Γ_n and Γ_p .
- A theoretical model for the FSI is required. In this talk, a quantum-mechanical microscopic model has been discussed.
- It is the spectra of emitted particles rather than the N_{nn}/N_{np} -ratio, the magnitude which should be reproduced.
- From the comparison with data, the microscopic model shows a clear improvement over the spectra without FSI.
- Our results suggest that quantum-interference terms are not important
- **The next steps:** the microscopic model requires improvements and further studies:
 - a more realistic nuclear residual interaction,
 - the inclusion of the Pauli exchange terms in 2N-ind,
 - the study of the effect of the $\Delta(1232)$ over the spectra,
 - the evaluation of the double coincidence emission spectra.
 - Finally, the microscopic model allows to study not only $V^{\Lambda N \rightarrow NN}$ but also V^{NN} .

Arigatou Gozaimashita!

(Thank you!)

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 15/

The Γ_1 and Γ_2 -decay widths

$$\Gamma_{1}(\boldsymbol{k},k_{F}) = \mathcal{N}^{2}(k_{F})\sum_{f} \left| \langle f|V^{\Lambda N \to NN}|p_{\Lambda} \rangle \right|^{2} \delta(E_{f}-E_{0}),$$

$$\Gamma_{2}(\boldsymbol{k},k_{F}) = \mathcal{N}^{2}(k_{F})\sum_{f} \left| \sum_{p'_{2}h_{2}p_{3}h_{3}} \langle f|V^{\Lambda N \to NN}|p'_{2}h_{2}p_{3}h_{3}; p_{\Lambda} \rangle \right|$$

$$\times \frac{\langle p'_{2}h_{2}p_{3}h_{3}; p_{\Lambda}|V^{NN}|p_{\Lambda} \rangle}{\varepsilon_{p'_{2}}-\varepsilon_{h_{2}}+\varepsilon_{p_{3}}-\varepsilon_{h_{3}}} \right|^{2} \delta(E_{f}-E_{0}),$$

$$\mathcal{N}(k_F) = \left(1 + \sum_{\substack{p_2'h_2p_3h_3}} \left| \frac{\langle p_2'h_2p_3h_3 | V^{NN} | \rangle}{\varepsilon_{p_2'} - \varepsilon_{h_2} + \varepsilon_{p_3} - \varepsilon_{h_3}} \right|^2 \right)^{-1/2}$$

$$\Gamma_{1(2)} = \int d\boldsymbol{k} \, |\widetilde{\psi}_{\Lambda}(\boldsymbol{k})|^2 \int d\boldsymbol{r} \, |\psi_{\Lambda}(\boldsymbol{r})|^2 \Gamma_{1(2)}(\boldsymbol{k}, k_F(r)) ,$$

The 10th International Conference on Hypernuclear and Strange Particle Physics (Hyp-X), Tokai (J-PARC), Japan. September 15, 2009 – p. 16/

