Shell model of light hypernuclei with ΛN and ΛNN forces derived from hypernuclear γ -line data

V.N. Fetisov Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, Russia

September 16, 2009

ΛN configuration space

The three-body diagrams 2), 3), 4) are responsible for $\Lambda - \Sigma$ coupling in the ΛN configuration space.

Their role was considered in s-shell hpernuclei

by A.R. Bodmer, Q.N. Usmani (1986), M.Shoeb(2000) with collaborators.

A. Gal (1990) found the corresponding Λ NN-potentials for s-shell using a closure approximation over all intermediate Σ -nucleus states.

In zero-range approximation the three-body ΛNN potentials are reduced to the form

$$V = \delta(\mathbf{r}_{\Lambda} - \mathbf{r}_{1})\delta\mathbf{r}_{\Lambda} - \mathbf{r}_{2}(t + t^{s}\boldsymbol{\sigma}_{\Lambda}(\boldsymbol{\sigma}_{1} + \boldsymbol{\sigma}_{2}))$$

Two-body (Λ N) potential parameters:

Parameter of spin-spin ΛN interaction : $\Delta = \langle s_{\Lambda} N | V_{\sigma} | s_{\Lambda} N \rangle$

Two spin-orbit parameters: S_{Λ} , S_N

Parameter of tenzor interaction: T

and two radial integrals of three-body interaction:

$$I(\Lambda pp) = \int_0^\infty R_\Lambda^2 R_p^4 r^2 dr$$

$$I(\Lambda sp) = \int_0^\infty R_\Lambda^2 R_s^2 R_p^2 r^2 dr$$

For the oscillator wave functions

 $I(\Lambda sp) = 16/3^{5/2}\pi b^{6}, \ I(\Lambda pp) = (5/9)I(\Lambda sp)$

The hypernuclear matrix elements for the basis states $< s_{\Lambda}p^n$ are expressed in terms of the constants

$$G = \frac{t}{3^{5/2} 4 \pi^3 b^6}$$
 and $G_s = \frac{t^s}{3^{5/2} 4 \pi^3 b^6}$

The radial integrals of ΛNN interaction $I(\Lambda sp)$, $I(\Lambda pp)$ and the parameter of the spin-spin interaction Δ were calculated with the Woods-Saxon wave functions for Λ -hyperon and with the h.o. wave functions for nucleons. The ocsillator parameter *b* was taken using data on the nuclear RMS radii.

The link between the phenomenological ΛN -interaction potential (Gaussian form) and the three-body constants t and t^s was found early from the phenomenological description of properties of s-shell hypernuclei (A=4,5) with the $\Lambda NN \delta$ -forces given above (V.N. Fetisov, JETP letters 70 (1999) 233) and it (the basic assumption) is used in the 1p-shell hypernuclei.

Following to results of calculations (Y. Akaishi, T. Harada, S. Shinmura, and K.S. Myint, Phys. Rev. Lett. 84 (2000) 3539): only about 1/2 part of the $1^+ - 0^+$ doublet splitting in the A=4 s-shell hypernuclei is described the spin-spin ΛN interaction we accept by the link (above) for our phenomenological approach the values of constants:

 $V_{\sigma} = V_s - V_t = 60 \text{ MeVfm}^6$ (for the calculation of the spin-spin constant Δ),

and two three-body constants:

 $t = 176.0 \text{ MeV} \text{fm}^6$,

 $t^s = 248.78 \text{ MeV} \text{fm}^6.$

n

$^{16}_{\Lambda}$ O The explicit form of the 1⁻-level matrix $C_{i,j}$ and the energies of the $E(0^-)$ - and $E(2^-)$ - states for $^{16}_{\Lambda}$ O: Two 1⁻-basis states: 1) $_{is_{\Lambda}}, p_{1/2}^{-1}; 1^-$, 2) $_{is_{\Lambda}}, p_{3/2}^{-1}; 1^-$

$$C_{1,1} = -eps - \frac{1}{12}\Delta - \frac{1}{3}(S_{\Lambda} - S_N) + \frac{2}{3}(S_{\Lambda} + S_N) + 2T - \frac{8}{3}mG_s - \frac{40}{9}G_s;$$

$$C_{1,2} = (-\frac{1}{3}\Delta + \frac{1}{3}S_{\Lambda} - T - \frac{32}{3}mG_s - \frac{160}{9}G_s)\sqrt{2}; \quad C_{2,1} = C_{1,2};$$

$$C_{2,2} = -\frac{5}{12}\Delta - \frac{2}{3}(S_{\Lambda} + S_N) - \frac{1}{6}(S_{\Lambda} - S_N) + T - \frac{40}{3}mG_s - \frac{200}{9}G_s;$$

$$E(0^{-}) = -eps + \frac{1}{4}\Delta - S_{\Lambda} + S_N - 6T + 8mGs + \frac{40}{3}G_s;$$

$$E(2^{-}) = \frac{1}{4}\Delta + \frac{1}{2}(S_{\Lambda} - S_N) - \frac{3}{5}T + 8mGs + \frac{40}{3}G_s;$$

The excitation energy of the 2⁻-state in ${}^{16}_{\Lambda}$ O is determined in this model only by the two-body potential parameters $E^*(2^-) = E(2^-) - E(0^-) = eps + \frac{3}{2}(S_{\Lambda} - S_N) + \frac{27}{5}T,$ where eps = 6.176 MeV for ${}^{16}_{\Lambda}$ O.

The energies e1=6.562 MeV and e2=0.024 MeV of two 1⁻⁻ states in $^{16}_{\Lambda}$ O determined by two γ -lines observed are connected with four potential parameters Δ , S_{Λ} , S_N , T and Gs by two equations

$$(e1-e2)^{2} = (C_{1,1} - C_{2,2})^{2} + 4C_{2,2}^{2} \quad (1)$$

$$e1+e2-6.176 = -\Delta + \frac{3}{2}(S_{\Lambda} - S_{N}) + 15T - 32mGs - \frac{160}{3}Gs \quad (2)$$

⁹_ABe

The doublet splitting $d(3/2^+, 5/2^+)=0.046$ MeV in $^9_{\Lambda}Be$ found with the Barker nuclear forces for the shell model of the core nucleus ⁸Be gives the third equation for parameters

 $d = -0.0130\Delta - 2.487S_{\Lambda} + 0.602T + 2.772Gs \quad (3)$

The *b*-dependence of ΛN and ΛNN parameters (MeV) for $^{7}_{\Lambda}$ Li calculated with

 $V_{\sigma} = 60.0 \text{ MeVfm}^3$ (b = 1.92 fm for the free core-nucleus ⁶Li). ΛN , Λpp and Λsp (MeV) are the separate contributions of ΛN and ΛNN interactions involving p- and s- nucleons to the doublet splitting $\mathbb{E}_{exp.}(\frac{3}{2}^+, \frac{1}{2}^+) = 0.692 \text{ MeV}.$

<i>b</i> , fm	Δ	$S_{igwedge}$	S_n	T	$\wedge N$	$\wedge pp$	$\wedge sp$	$E(\frac{3}{2}^+,\frac{1}{2}^+)$
1.800	0.278	-0.130	-0.426	-0.0890	0.367	0.147	0.178	0.692
1.810	0.274	-0.0913	-0.414	-0.0595	0.377	0.142	0.173	0.692
1.820	0.270	-0.0439	-0.403	-0.0222	0.388	0.138	0.166	0.692
1.824	0.268	-0.0189	-0.400	-0.00183	0.392	0.136	0.164	0.692
1.828	0.267	0.0553	-0.406	0.0627	0.397	0.134	0.161	0.692
1.830	0.266	0.0127	-0.396	0.0236	0.394	0.133	0.161	E≤0.68 [°]
1.840	0.262	0.0556	-0.390	0.0576	0.390	0.129	0.155	E≤0.674

Potential parameters: line $(\Lambda N + \Lambda NN)$ - this work, line $(\Lambda \Sigma N)$ -D.J. Millener, Lect. Notes Phys. **724**, 31-79 (2007)

		Δ	S_{A}	S_n	T	Gs
7Li	$\Lambda N + \Lambda N N$	0.27	-0.0052	-0.40	0.01	0.0035
	$\Lambda \Sigma N$	0.43	-0.015	-0.39	0.030	$(\Lambda \Sigma)_i$
⁹ ∕Be	$\wedge N + \wedge NN$	0.30	-0.0047	-0.38	0.035	0.0042
	$\Lambda \Sigma N$	0.43	-0.015	-0.39	0.030	$(\Lambda \Sigma)_i$
$^{16}_{\Lambda}O$	$\Lambda N + \Lambda N N$	0.32	-0.0047	-0.38	0.035	0.0042
	$\Lambda \Sigma N$	0.315	-0.015	-0.35	0.0232	$(\Lambda \Sigma)_i$
15 N	$\Lambda N + \Lambda N N$	0.32	-0.0047	-0.38	0.035	0.0042
	$\Lambda \Sigma N$	0.315	-0.015	-0.35	0.0232	$(\Lambda \Sigma)_i$
$\begin{vmatrix} 13\\ \Lambda \end{vmatrix}$ C	$\Lambda N + \Lambda N N$	0.38	-0.0047	-0.38	0.035	0.0070
	$\Lambda \Sigma N$	_	_	_	_	_
$^{10}_{\Lambda}B$	$\Lambda N + \Lambda N N$	0.30	-0.0047	-0.38	0.035	0.0042
- •	$\Lambda \Sigma N$	0.33	-0.015	-0.35	0.0239	$(\Lambda \Sigma)_i$

Potential parameters of the effective interactions (MeV) with (6-16)2BME CK:no link with s-shell hyp.;

 S_{Λ} was taken near the value accepted by Millener; Δ, S_n, T and Gs derived by solving four equations for spectra ${}^9_{\Lambda}\text{Be}\&^{16}_{\Lambda}\text{O}$ including probably observed $\text{E}^*(2^-, {}^{16}_{\Lambda}\text{O})=6.784$ MeV

	S_{Λ}	S_n	T	Gs	$E(2^{-}-1^{-}, ^{10}_{\Lambda} B)$
0.336	-0.013	-0.320	0.0223	0.000561	0.140
0.275	-0.012	-0.320	0.0221	0.00124	0.121
0.215	-0.011	-0.320	0.0217	0.00191	0.104
0.1536	-0.010	-0.321	0.0214	0.00259	0.087