DELAYED CLUSTERS ACCOMPANYING NON-MESONIC WEAK DECAY OF THE HYPERNUCLEI

Lubomír Majling

Nuclear Physics Institute, CAS, Řež, Czech Republic and

Olga Majlingová Czech Technical University, Prague, Czech Republic

Outline

- 1. Motivation
- 2. Delayed clusters
- 3. **Perspective**

This Research is part of the EU Initiative FP7 HadronPhysics ₂ (Project number 227431) Study of Strongly Interacting Matter

Tokai, September 17, 2009 L. Majling: 1 / 11

HYP X

1 MOTIVATION

"Strictly speaking,

the only observables in hypernuclear weak decay are the lifetime τ and spectra of the emitted particles.

None of the mesonic and non-mesonic decay rates is an **observable** from a quantum-mechanical point of view."

```
E. Bauer and G. Garbarino :
On the role of g.s. correlations in HN NM WD
arXiv: 0907.4199 [nucl-th]
```

We will try to convinced you

that the **nuclear structure** aspects of the problem,

often an unwelcome part of the theory,

in **some peculiar cases** can be very useful.

 $\mathrm{HYP}\ \mathrm{X}$

Tokai, September 17, 2009

L. Majling: 2 / 11

2 DELAYED CLUSTERS

in some light p- shell nuclei

stripping of nucleon from the ground state results in a RESONANCE STATE :

it is possible to study **EXCLUSIVE CHANNELS**

 $\mathrm{HYP}\ \mathrm{X}$

Tokai, September 17, 2009

L. Majling: 3 / 11

List of resonance states 2.1

$J^{\pi} T$	E, Me	V decay	E, Me	V decay	
	8	Be	⁸ L	⁸ Li / ⁸ B	
$0^{+} \ 0$	0.00	$\alpha + \alpha$			
$2^{+} 0$	3.03	$\alpha + \alpha$			
$4^{+} 0$	11.35	$\alpha + \alpha$			
$2^{+} 0_{1}$	16.63	$\alpha + \alpha$			
$2^{+} 1^{f}$	16.92	$\alpha + \alpha$	0.00	β^-/β^+	
	,	$^{7}\mathrm{Li}$		⁷ Be	
$\frac{3}{2}^{-}$ $\frac{1}{2}$	0.00	stable	0.00	ϵ -capture	
$\frac{1}{2}^{-}$ $\frac{1}{2}$	0.48	γ	0.43	γ	
$\frac{7}{2}^{-}$ $\frac{1}{2}$	4.65	$\alpha + {}^{3}\mathrm{H}$	4.57	$\alpha + {}^{3}\text{He}$	
$\frac{5}{2}^{-}$ $\frac{1}{2}$	6.60	$\alpha + {}^{3}\mathrm{H}$	6.73	$\alpha + {}^{3}\text{He}$	
		$^{6}\mathrm{Li}$	$^{6}\mathrm{He}$		
$1^{+} 0$	0.00	stable			
$3^{+} 0$	2.19	$\alpha + d$			
$0^{+} 1$	3.56	γ	0.00	β^-	
•••					
$2^{-} 1$	17.99	$^{3}\mathrm{H}+^{3}\mathrm{He}$	14.6	$^{3}\mathrm{H}+^{3}\mathrm{H}$	
	⁵ He			⁵ Li	
$\frac{3}{2}^{-}$ $\frac{1}{2}$	0.00	$\alpha + n$	0.00	$\alpha + p$	
$\frac{1}{2}^{-}$ $\frac{1}{2}^{-}$	6.17	$\alpha + n$	6.18	$\alpha + p$	
$\frac{3}{2}^{+}$ $\frac{1}{2}$	16.66	$^{3}\mathrm{H}+d$	16.63	$^{3}\text{He}+d$	
$\frac{1}{2} + \frac{1}{2}$	20.32	$^{3}\mathrm{H}+d$	20.30	$^{3}\text{He}+d$	

D.R. Tilley $et \ al., \, {\rm NP} \ {\rm A} \ {\bf 708} \ \ {\rm and} \ {\bf 745}$:

HYP X

Tokai, September 17, 2009 L. Majling: 4 / 11

Population of the excited states in final nuclei 2.2

$^{A}_{\Lambda}\mathrm{Z}$				$^{A_{f}}\mathbf{Z}_{f}$	stable	$\operatorname{clu} lpha$	$_{^{3}\mathrm{H}(^{3}\mathrm{He})}$	total break
$^{7}_{\Lambda}{ m Li}$	\langle	n+p n+n	++	⁵ He ⁵ Li	0 0	$0.20 \\ 0.20$	$\begin{array}{c} 0.28\\ 0.28\end{array}$	$0.02 \\ 0.02$
$^{8}_{\Lambda}{ m Li}$	\langle	n+p n+n	++	⁶ He ⁶ Li	$0.09 \\ 0.19$	- 0.11	$\begin{array}{c} 0.21 \\ 0.11 \end{array}$	$\begin{array}{c} 0.13 \\ 0.16 \end{array}$
$^{8}_{\Lambda}\mathrm{Be}$	\rightarrow	n+p	+	⁶ Li	0.19	0.11	0.11	0.16
$^9_\Lambda { m Li}$	\rightarrow	n+n	+	⁷ Li	0.29	0	0	0.21
$^9_{\Lambda}{ m Be}$	\langle	n+p n+n	++	$^{7}\mathrm{Li}$ $^{7}\mathrm{Be}$	$0.29 \\ 0.29$	0 0	0 0	$0.21 \\ 0.21$
$^9_\Lambda { m B}$	\rightarrow	n+p	+	⁷ Be	0.29	0	0	0.21
$^{10}_{\Lambda}{ m Be}$	\langle	n+p n+n	++	8 Li (β^{-}) 8 Be	0 0	$\begin{array}{c} 0.17\\ 0.30\end{array}$	0 0	$0.27 \\ 0.26$
$^{10}_{\Lambda}{ m B}$	\langle	n+p n+n	++	$^{8}\text{Be} \\ ^{8}\text{B} (\beta^{+})$	0 0	$\begin{array}{c} 0.30\\ 0.17\end{array}$	0 0	$0.26 \\ 0.27$

HYP X

Tokai, September 17, 2009 L. Majling: 5 / 11

2.3 alpha clusters

LM, Batusov, HYP VII, NP A 691 (2001)

LM, Batusov, Lukstins, Parfenov, HYP VIII, NP A 754 (2005)

Batusov, Lukstins, LM, Parfenov, Phys. Particles & Nuclei, 36 (2005)

⁹Be spectroscopic factors

Notation of the partial widths. Note the similarity of the structure of $\Gamma^{n}_{\alpha\alpha} {}^{10}_{\Lambda}$ Be and $\Gamma^{p}_{\alpha\alpha} {}^{10}_{\Lambda}$ B.

2.4 Delayed d + t clusters

⁶ Li	$1^+ 0$, g.s.	$s^4 \ p^2$

model	2T+	1,2S+	$^{1}L_{J}$	$^{13}S_{1}$	$^{13}D_{1}$	${}^{11}P_1$
			[f]	[42]	[42]	[411]
SM	Barker	'66		0.992	-0.028	0.120
GFMC	Pudliner	'97		0.987	0.117	0.111

Energy levels of ${}^{5}\text{He}$ and ${}^{5}\text{Li}$

[f]	J^{π}	E(He)	E(Li)
$s^4 p$			
[41] ²² P	$\frac{3}{2}^{-}$	g.s.	g.s.
[41] ²² P	$\frac{1}{2}^{-}$	6.17	6.18
$s^3 \; p^2$			
[32] ²⁴ S	$\frac{3}{2}^{+}$	16.84	16.87
[32] ²² S	$\frac{\overline{1}}{2}^+$	21.64	20.63
thresholds :	lpha	-0.80	-1.69
	d	16.79	16.66

fpc		[42] ${}^{13}\Gamma$
[32] [32]	$^{24}\Gamma$ $^{22}\Gamma$	$-\sqrt{\frac{4}{5}} \sqrt{\frac{1}{5}}$

Tokai, September 17, 2009 L. Majling: 7 / 11

 $\Gamma_{nm}(^{4}_{\Lambda}H) \equiv \Gamma^{n}_{H} + \Gamma^{p}_{H} = \varrho_{4}/6 \cdot (1 R_{n0} + 3 R_{n1} + 2 R_{p0} + 0 R_{p1})$ $\Gamma_{nm}(^{4}_{\Lambda}He) \equiv \Gamma^{n}_{He} + \Gamma^{p}_{He} = \varrho_{4}/6 \cdot (2 R_{n0} + 0 R_{n1} + 1 R_{p0} + 3 R_{p1})$

$$\begin{aligned} \mathbf{7}_{\mathbf{\Lambda}}\mathbf{Li} & nn + {}^{5}\mathrm{Li} \left(\frac{3}{2} + \frac{1}{2}; 16.6\right): \quad \frac{5}{9} \cdot \frac{1}{2} \cdot \frac{4}{5} \times & 1 \ w_{11}^{0n} \\ nn + {}^{5}\mathrm{Li} \left(\frac{1}{2} + \frac{1}{2}; 20.3\right): \quad \frac{5}{9} \cdot \frac{1}{2} \cdot \frac{1}{5} \times & \frac{1}{4} \left(1 \ w_{11}^{0n} + 3 \ w_{00}^{0n}\right) \\ np + {}^{5}\mathrm{He} \left(\frac{3}{2} + \frac{1}{2}; 16.7\right): \quad \frac{5}{9} \cdot \frac{1}{2} \cdot \frac{4}{5} \times & 1 \ w_{11}^{0p} \\ np + {}^{5}\mathrm{He} \left(\frac{1}{2} + \frac{1}{2}; 20.3\right): \quad \frac{5}{9} \cdot \frac{1}{2} \cdot \frac{1}{5} \times & \frac{1}{4} \left(1 \ w_{11}^{0p} + 3 \ w_{00}^{0p}\right) \\ \mathcal{R}_{1} \equiv \frac{5\mathrm{Li}(1/2^{+})}{5\mathrm{Li}(3/2^{+})} & \mathcal{R}_{2} \equiv \frac{5\mathrm{He}(1/2^{+})}{5\mathrm{He}(3/2^{+})} & \mathcal{R}_{3} \equiv \frac{5\mathrm{Li}(3/2^{+})}{5\mathrm{He}(3/2^{+})} \end{aligned}$$

		$^4_\Lambda { m H}$		$^4_{\Lambda} \mathrm{I}$	He	$^{7}_{\Lambda}{ m Li}$		
Ref.	model	$\Gamma_{\rm nm}$	Γ_n/Γ_p	$\Gamma_{\rm nm}$	Γ_n/Γ_p	$\kappa \mathcal{R}_1$	$\kappa \mathcal{R}_2$	\mathcal{R}_3
[1]	π	0.02482	4.1192	0.2141	0.0475	3.890	1.108	<u>0.075</u>
	$+2\pi/\rho$	0.02418	9.2497	0.1094	0.0452	2.090	<u>1.102</u>	0.188
+27	$\pi/\sigma + \omega$	0.08700	2.7243	0.4065	0.1302	6.238	1.302	0.116
	$+\rho$	0.1278	2.1709	0.3034	0.3631	<u>8.719</u>	1.896	0.233
[2]	ME	0.128	2.705	0.235	0.417	6.308	2.068	0.397
	DQ+	0.204	0.693	0.229	0.269	4.600	5.500	<u>0.500</u>
[3]	PSVE	0.159	9.98	0.492	0.062	2.007	1.138	0.284
	PKE	0.149	27.9	0.368	0.031	<u>1.360</u>	1.063	0.372
	SPKE	0.076	2.70	0.191	0.068	1.831	1.127	0.368
[4]	Exp.			0.177	≤ 0.19			

[1] K. Itonaga *et al.*, Phys. Rev. C **65** (2002) 034617.

[2] K. Sasaki *et al.*, Phys. Rev. C **71** (2005) 035502.

[3] E. Bauer *et al.*, Phys. Lett. **B 674** (2009) 103.

[4] J.D. Parker *et al.*, Phys. Rev. C 76 (2007) 035501.

 $\mathrm{HYP}\ \mathrm{X}$

Tokai, September 17, 2009

L. Majling: 8 / 11

3 PERSPECTIVE

3.1 Experiment

Beam		Target		S	econdaries
				SLOW	FAST
K ⁻	+	$^{A}\mathrm{Z}$	\rightarrow	$^A_\Lambda { m Z}$	$+$ π^{-}
$^{A}\mathrm{Z}$	+	р	\rightarrow	K^+	+ n + $\begin{bmatrix} A \\ \Lambda \end{bmatrix}$

Kinematics for hypernuclear production

Relativistic hypernuclei

Yu. Batusov, J. Lukstins, LM, A. Parfenov, "Alpha decays" of ¹⁰_ABe and ¹⁰_AB hypernuclei on a Nuclotron: A clue to some puzzles in nonleptonic processes"
Physics of Particles and Nuclei, **36** (2005) 169 – 190.

Status and last news: Juris LUKSTINS, this session

another possibility : HypHI at GSI T.R. Saito, Monday

Tokai, September 17, 2009 L. Majling: 9 / 11

 $\mathrm{HYP}\ \mathrm{X}$

3.2 Theory

The role of s^{-1} - hole states in *p*- shell hypernuclei

• E. Hiyama, T. Yamada: Structure of light hypernuclei to appear in Progress in Particle and Nuclear Physics

- Bertini *et. al.* : ${}^{6}_{\Lambda}$ Li, ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, ${}^{12}_{\Lambda}$ C, ${}^{13}_{\Lambda}$ C,
- feeding of the ${}^{7}_{\Lambda}$ Li $({}^{7+}_{2})$ from ${}^{10}_{\Lambda}$ B
- new proposal L.Tang, A. Margaryan, S.N. Nakamura, J.Reinhold : Study of light hypernuclei by pionic decay at JLab
- C. Barbero, A.P. Galeão, M.S. Hussein, F. Krmpotič: *Kinetic energy sum spectra in nonmesonic weak decay of hypernuclei* Phys. Rev. C 78, 044312 (2008)
- R.A. Eramzhyan, B.S. Ishkhanov, I.M. Kapitonov, V.G. Neudatchin: *The GDR in light nuclei and related phenomena* Phys. Reports 136, 229 (1986)

Problems:

Spurious states of Center-of Mass

Continuum

Channel coupling

Kinematics

Tokai, September 17, 2009

L. Majling: 10 / 11

3.3 Expectations

 $\mathrm{HYP}\ \mathrm{X}$

Tokai, September 17, 2009 L. Majling: 11 / 11