

Penta-Quark

-Status of $\Theta^{\scriptscriptstyle +}$ study at LEPS-

Takashi NAKANO (RCNP, Osaka University)

Outline

- Introduction
- Data analysis and results PRC 79, 025210 (2009)
- Summary and Prospects

Hyp-X@ Tokai, September 14-18th, 2009.

Experimental status

•Not seen in the most of the high energy experiments: The production rate of $\Theta^+/\Lambda(1520)$ is less than 1%.

•Production rate depends on reaction mechanism.

•No signal observation in CLAS γp , KEK-PS (π^-, K^-), (K⁺, π^+) experiments.

•K* coupling should be VERY small.

•The width must be less than 1 MeV. (DIANA and KEK-B) reverse reaction of the Θ^+ decay: $\Theta^+ \rightarrow n K^+$

•K coupling should be small.

•LEPS could be inconsistent with CLAS γ d experiment (CLAS-g10).

•Strong angle or energy dependence.

Difference between LEPS and CLAS for $\gamma n \rightarrow K^-\Theta^+$ study

LEPS

Good forward angle coverage

Poor wide angle coverage

Low energy

Symmetric acceptance for K^+ and $K^- \longrightarrow$ Asymmetric acceptance

M_{KK}≳1.04 GeV/c²

Select quasi-free process

CLAS

- ← Poor forward angle coverage
- ←→ Good wide angle coverage
- ← Medium energy
- → M_{ĸĸ} > 1.07 GeV/c²
- ←→ Require re-scattering or large Fermi momentum of a spectator
- K⁻ coverage: LEPS: $θ_{LAB}$ < 20 degree

CLAS: θ_{LAB} > 20 degree

LEPS beamline

in operation since 2000

LEPS spectrometer

Charged particle spectrometer with forward acceptance PID from momentum and time-of-flight measurements

The reaction studied at LEPS

Fermi motion of a neutron distorts the γK^2 missing mass.

Quasi-free production of Θ^+ and $\Lambda(1520)$

- •Both reactions are quasi-free processes.
- •Fermi-motion should be corrected.
- •Existence of a spectator nucleon characterize both reactions.

Minimum Momentum Spectator Approximation

Minimum Momentum Spectator Approximation

Minimum Momentum Spectator Approximation

the minimum momentum for given $|\vec{p}_{CM}|$ and \vec{v}_{CM} .

Minimum Momentum Spectator Approximation (MMSA)

$$p_{pn} = p_{miss} = p_{\gamma} + p_d - p_{K^+} - p_{K^-} \qquad p_{pn} = (E_{pn}, \overline{p}_{pn})$$

$$p_d = (m_d, 0)$$

$$M_{pn}^2 = p_{pn} \cdot p_{pn}$$

$$p_{CM} = \frac{\sqrt{(M_{pn} + m_p + m_n)(M_{pn} - m_p + m_n)(M_{pn} + m_p - m_n)(M_{pn} - m_p - m_n)}}{2M_{pn}}$$

$$\begin{array}{ll} \text{minimum}\\ \text{momentum} \end{array} & p_{\min} = -p_{CM} \cdot \frac{E_{miss}}{M_{pn}} + \sqrt{p_{CM}^2 + m_N^2} \cdot \frac{\left| \overrightarrow{p}_{miss} \right|}{M_{pn}}, \\ p_{res} = \left| \overrightarrow{p}_{miss} \right| - p_{\min}, \qquad \overrightarrow{p}_n = p_{res} \cdot \frac{\overrightarrow{p}_{miss}}{\left| \overrightarrow{p}_{miss} \right|}. \end{array}$$

2-fold roles of MMSA

Fermi momentum

MC data of $\gamma n(p) \rightarrow K^- \Theta^+(p) \rightarrow K^- K^+ n(p)$ with Fermi motion

z component

x component

true proton momentum (GeV/c)

true proton momentum (GeV/c)

Better M_{nK^+} mass resolution with MSSA

 M_{nK^+} mass resolution is improved by a factor of 2 compared to a simple (γ, K^-) missing mass resolution, where the initial neutron is assumed to be at rest.

M²(*pK*⁻) vs M²(*K*⁺*K*⁻)

LEPS and CLAS ϕ exclusion cut condition

Signal acceptance of ϕ exclusion cut

$M^2(pK^-)$ vs $M^2(K^+K^-)$ after ϕ exclusion cut

 $\Lambda(1520)$ events are not concentrated near the cut boundary.

What characterize the signal and background?

 p_{min} for background events are almost determined by Fermi motion (deuteron wave function).

Approximated M(NK) calculation

 $M(NK^{\mp}) = MM(\gamma, K^{\pm}) + \Delta M'(p_{\min})$

 $MM(\gamma, K^{\pm})$ only depends on E_{γ} and $p_{K^{\pm}}$.

Randomized Minimum Momentum Method "Guess a minimum momentum from a missing mass."

Mean and σ of p_{min} depends on MM(γ ,K), but the dependence is week.

Statistical improvement with the RMM

Fit to a single RMM specrum (dashed line) and 3 RMM spectra (solid line).

Test with MC data

Results of $\Lambda(1520)$ analysis

pK⁻ invariant mass with MMSA: Fermi motion effect corrected.

Results of Θ^+ analysis

nK⁺ invariant mass with MMSA: Fermi motion effect corrected.

$M^{2}(nK^{+})$ vs. $M^{2}(pK^{-})$

We assume a proton is a spectator for $M(nK^+)$ a neutron is a spectator for $M(pK^-)$

Next step

Probability of 1/5000000 may not be low enough. "Extraordinary claim requires an extraordinary evidence."

High statistics data was collected in 2006-2007 with the same experimental setup.

Blind analysis is under way to check the Θ^+ peak

Setup of TPC experiment

Experiment with a new TPC and a new LH2/LD2 target was started in January, 2008.

Θ^+ search experiment at J-PARC

- Reverse reaction of the Θ⁺ decay using a low energy K⁺ beam gives an unambiguous answer.
 K⁺n → Θ⁺ → K_s⁰p
- Cross-section depends on only the spin and the decay width.

$$\sigma = \frac{\pi}{8k^2} (2J + 1) \int \frac{\Gamma^2}{(E - M)^2 + \Gamma^2 / 4} dE \implies 26.4 \ \Gamma \ \text{mb/MeV}$$

CEX (K⁺n→K_S⁰p) ~7 mb

Summary and prospects

- 1.We observed a 5- σ peak in the Fermi-motion corrected nK⁺ invariant mass at 1.527 GeV/c².
- 2.New data set with 3 times more statistics was taken.
- 3. Blind analysis in under way to check the validity of the peak.
- 4. A new experiment with a Time Projection Chamber has been carried out since Jan 2008. → wider angle coverage and Θ^+ reconstruction in pK_s decay mode.
- 5. If the peak is confirmed, we plan to carry out the elastic formation experiment by using a low energy K⁺ beam at J-PARC.