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Abstract

 

The Continuous Electron Beam Accelerator Facility (CEBAF) will use object-oriented databases (OODBs) to manage ac-
celerator control system data. The managed data will include algorithmic detail of low-level controls, operationally specified
control parameters and high-level accelerator modeling data. Tools have been built to support a variety of database users, in-
cluding developers of both low-level and high-level software, machine operators and accelerator physicists. The planned data-
bases will be both flexible and fast, and should prove to be ideal tools for meeting the diverse needs of their users.

 

Introduction

 

CEBAF plans to integrate as much accelerator-related data as possible using a single general-purpose object-oriented da-
tabase management system (ODBMS). The commercial database system used at CEBAF is ObjectStore, sold by Object Design
Incorporated [1]. The database tool itself is closely tied to the language C++. Persistent objects are created using the C++ func-
tion 

 

new

 

, which is overloaded to support the generation of these objects within a database. The first step in the database devel-
opment process at CEBAF was to identify the kinds of data most suitable for management using the ODBMS. The two types
of data chosen were low-level control algorithm data and high-level accelerator modeling data. These data types were selected
because of their need for management tools, and their suitability for objectification. More detailed descriptions of the data, and
summaries of their integration into OODBs follow. 

The first section of this paper is a discussion of the development of a control algorithm database. Background information
concerning the data and how it is used as part of the real-time control of the accelerator is presented, as well as how the data are
generated by developers of the control algorithms. Following this discussion is a brief introduction to the data objects them-
selves and a presentation of the data organization within the OODB. The last part of this section discusses how tools constructed
with the ODBMS are used by accelerator staff and some performance measurements. 

The second section of the paper presents information about the accelerator model database. Firstly we address the origin
of the data, and the motivation for using the ODBMS to manage it. This is followed by the data structure of the model objects,
the organization of the OODB, and how the model database is used. 

 

I.    CONTROL ALGORITHM DATA

 

Background

 

The software that controls the CEBAF accelerator is the Experimental Physics and Industrial Control System (EPICS). EP-
ICS is a distributed system which acquires data and executes control algorithms using a real-time operating system running on
single-board computers, known as Input-Output Controllers (IOCs). Graphical user interfaces and other client applications
communicate with the IOCs using a network protocol [2] based on TCP and UDP. 

In EPICS control algorithms are built from atomic elements called records. Each record is made up of a collection of data
values, known as fields. Each record has support software which is executed on an IOC when the record is processed. At the
time the record is processed, the support software uses the data values associated with that instance of the record to perform the
record’s control functions. 

CEBAF uses 37 IOCs to control over 5000 physical devices. The great majority of these devices are duplicated many times.
For example, CEBAF has 42 RF cryomodules, 117 viewers and 550 4-channel BPMs. The algorithm for controlling each of
these duplicates is identical; it is only the data associated with each that is different (e.g. hardware addresses or calibration data). 

The set of devices controlled by a particular IOC is determined by their proximity to the IOC. This means that the acceler-
ator layout determines which control algorithms and therefore which records execute on a particular IOC. Each different type
of device is controlled by an algorithmic unit, or application, which is made up of a number of EPICS records. Because each
instance of a device type is controlled identically, there are no algorithmic differences within the executing control software,
only data differences. This means the algorithm can be replicated for each instance of each device type. 

EPICS provides a powerful environment for developing a modern, flexible control system. It does not, however, provide
tools for replicating or managing the more than 100,000 records that make up the CEBAF control system. One of the goals in
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using an ODBMS is to provide a mechanism for managing those records. A second goal is to pass responsibility for managing
operational data to the machine operations group, removing software developers from data management responsibilities in this
area. 

 

Database Objects

 

The control algorithm database contains a variety of different objects. Most of the objects are subclassed from a single ob-
ject, 

 

schemata

 

. A 

 

schemata

 

 object has the attributes 

 

name

 

 and 

 

components

 

. A 

 

name

 

 is a character string used as an identifier
for the object and 

 

components

 

 is a collection of pointers to other objects. The pointers can be references to any object, and
almost universally refer to objects also subclassed from 

 

schemata

 

. In this manner, the OODB representation of the entire control
algorithm database is a tree of 

 

schemata

 

-derived objects, Figure 1. 

The control algorithm database is navigated using the name of the object being searched for. Starting from a parent node,
the 

 

name

 

 of each of the 

 

components

 

 of the parent 

 

schemata

 

 node are compared against the name being used in the search. A
name match indicates that the correct object has been found. When the number of references in a 

 

components

 

 collection is
large, making a linear search time-consuming, the ODBMS provides indexing methods that greatly speed up finding a name
match. The cost of supporting the indexing is the need for additional storage space in the database. 

For example, in order to find a specific application named “RF for NL zone 2”, which is derived from the generic applica-
tion “RF”, the database is navigated as follows, using Figure 1 as a guide: first the “Applications” object must be found. A linear
search of the five “EPICS DB” 

 

components

 

 returns a pointer to the “Applications” object. (The returned pointer must be cast
correctly because the search method returns a pointer of type void*.) Using the “Applications” object as the parent now, an
indexed search of its child nodes for the 

 

component

 

 “RF” is found. “RF” is one of the collection of generic applications. The
generic application “RF” is then used as the parent and a linear search of its child nodes finds the 

 

component

 

 named “RF for
NL zone 2”. 

 

Application Developer Support

 

Part of the purpose of using this OODB is to assist application developers in managing algorithmic control data. One of the
ways it can help is in the process of instantiating a control algorithm for a device. As mentioned previously, most of the devices
in the accelerator are used repeatedly. For instance, the 42 RF cryomodules require more than 70,000 EPICS records to support
data acquisition and control. The algorithm for controlling each of the 42 is identical: all differences are contained within the
record field names and in the record names themselves. A developer can build a generic algorithm to control a single cryomod-
ule and this generic can be instantiated, once for each physical cryomodule. The instantiation process must manage name con-
volution to give each instantiated record a unique name, at the same time setting field values appropriately to keep the algorithm
internally consistent. 
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Figure 1: Schematic of the Control Algorithm Database



 

The application developers have the opportunity ofmanaging their algorithms in one of two ways: they can perform instan-
tiation outside of the database or inside it. External instantiation requires the use of standard UNIX tools like 

 

awk

 

 and 

 

sed

 

 op-
erating on ASCII files that define the control algorithms. The instantiated algorithms can then be installed into the OODB using
software developed for this purpose.This method is attractive because the UNIX instantiation tools have already been developed
for existing applications. One drawback is that these tools have been developed independently for each application, and there
are no standards for the tools. A second and more serious problem with managing control algorithms this way is that data main-
tenance must be performed when the control algorithms are modified. This is required to insure that operational data is not lost
when moving from one version to another. 

Alternatively, application developers can perform instantiation within the database. With this technique the algorithm de-
veloped to control a device is installed as a generic application. The application developer then specifies the rules that will be
used to instantiate that generic. The format of the rules must conform to the standards that are imposed by the instantiation tools.
This imposes a burden on the developers to learn the syntax of the instantiation rules, but allows them to depend on OODB tools
to do all instantiation. The developers are relieved of having to build instantiation tools of their own, or to adapt some other
tools. After the generic algorithm and instantiation rules are specified, the algorithm can be instantiated. This process is auto-
mated by tools associated with the control algorithm database. When changes are made to the generic algorithm the new version
can be installed, replacing the previous version. The new version can be instantiated immediately, using the already existing
rules. Any changes to the database made by operations personnel are automatically migrated to the newly instantiated algo-
rithms. This allow the data to persist across modifications to the generic algorithm and requires no intervention by either the
developer or operations staff. 

Instantiation inside the database is faster than instantiation externally. For example, generating a new instance of an RF
algorithm takes roughly 5 minutes when done outside the database and slightly more than 2 minutes when done internally. A
significant fraction of this time difference is due to disk reads and writes, because external instantiation is done with multiple
passes through ASCII files, rather than with a single pass. 

 

Operations Support

 

The second reason for using the OODB is to assist machine operations staff. The distributed nature of EPICS has led CE-
BAF to use a proliferation of data management tools. Some of the data is managed with the EPICS tool 

 

burt

 

. Some is managed
by software developers, who assure that operational data gets propagated into new versions of control algorithms as they are
developed. The remainder of data management is done using a variety of tools, such as scripts which must be executed when
IOCs are rebooted, or when a hardware crate is taken out of bypass mode. This variety of methods is burdensome to maintain.

The OODB provides operations staff with a tool that allows them to make persistent changes to field values on the opera-
tional machine. That is, a data change can be applied immediately to the running machine, but also to be the control algorithm
resident in the OODB. After reboots of the IOC, the new data values will persist. The data values also persist through algorith-
mic changes, provided that instantiation is done within the OODB. This means the operator-set data values will be automatically
migrated to new releases of the algorithm by application developers, assuring continuity of the data. 

 

II.    ACCELERATOR MODEL DATA

 

Background

 

CEBAF requires a number of high-level applications in order to operate the accelerator effectively. These applications in-
clude orbit lock, energy management, autosteering and others. All of the high-level applications share a need to obtain model
data that describes the configuration of the machine. The model data is derived from the DIMAD files that were used in the
optical design of the CEBAF accelerator and are the authoritative source for its physical description. A DIMAD file describing
the machine is a series of descriptions of each of the accelerator elements, including its location, length, element type and data
specific to that element type. 

The DIMAD input files are awkward to use. They are in ASCII-format and must be parsed in order to be used by software.
This makes initialization of high-level applications time consuming, taking approximately 40 CPU seconds on an HP-700 series
machine. Further, many applications require data for only a subset of the machine. This means that either every application must
parse the complete file, or else many different files are needed, where each file contains a portion of the accelerator data. In
addition, users of high-level applications frequently like to examine “what if” scenarios with models of the machine. Using DI-
MAD files in these situations would require tools to automatically generate such files and a management system to support the
tools. Clearly managing the model data with DIMAD files would be difficult, so it was decided to use an OODB for this pur-
pose. 

 

Database Objects

 

The machine model consist of a collection of beam elements, where each element has as attributes the physical character-



 

istics of the device associated with that model element. The elements are well-suited to objectification, as each type maps nat-
urally onto a C++ object. Classes for all element types are derived from a single class, 

 

beamElement

 

. The 

 

beamElement

 

 class
has attributes associated with every device in the beamline: optical length, position in the beamline, aperture, misalignment and
rotation. Objects which are subclassed have additional attributes. For example, the 

 

BPM

 

 class adds attributes that describe the
beam position at the modeled BPM. The 

 

Magnet

 

 class adds attributes related to magnetic field strength and is used to derive all
of the magnet classes, such as 

 

Dipole

 

 and 

 

Quad

 

. 
The model OODB supports other objects related to the management of 

 

beamElement

 

s. One object is the 

 

beamSect

 

, or
beamline section, which is an ordered collection of pointers to 

 

beamElement

 

 objects. An example of a 

 

beamSect

 

 is 

 

lin1

 

, which
has in its collection of 

 

beamElements 

 

pointers to model information for all machine elements in the first pass of the CEBAF
north LINAC. Another object type is 

 

beamLine

 

, which is an ordered collection of pointers to 

 

beamSect

 

 objects. An example of
a 

 

beamLine

 

 instance is the entire accelerator from injector to CEBAF experimental hall C. A second 

 

beamLine

 

 instance, for
example the entire accelerator from injector to CEBAF experimental hall B, has in its collection pointers to the same set of

 

beamSect

 

s as the first, except that the 

 

beamSect

 

 pointer that corresponds to the beam line between the CEBAF extraction region
and hall C is replaced with the 

 

beamSect

 

 for the beam line between the extraction region and hall B. 

 

Database Usage

 

The model database is not used directly by high-level applications. Even with the high performance of the ODBMS, it takes
over 20 seconds to access the entire 30 megabyte model database. If each application had to read the entire model database
during initialization, program start-up time would be too long. Instead, a model server is used to provide applications with ac-
cess to the model data. The server keeps an image of the OODB in a block of shared memory, requiring no disk reads to find
and send model data to client applications. 

The database is built by a modified version of DIMAD, which reads appropriately-formatted input files and generates per-
sistent 

 

beamElement

 

 objects in the database. From there, a separate process reads the OODB and populates the shared memory
with the model data. The model server is then started, using the shared memory data as its source, Figure 2.

The OODB can be updated at any time to reflect the current state of the machine as it is modeled by ARTEMIS. This is
needed because ARTEMIS can be connected to the running accelerator control system, acquiring real-time data from the ma-
chine. The machine state is saved using a tool that reads the shared memory and stores copies of the objects found there to the
OODB. The saved machine state can then be used off-line, running high-level applications against that image of the machine.

Models of the machine will come in different flavors: a “design” version which reflects a theoretically perfect accelerator,
a “golden” version that models an ideal version of the real machine (with alignment errors, etc.) and a “real-time” version that
models the machine as it is currently configured. Each of the versions will be stored in separate database files, making it easier
to save images of the machine and use them to perform “what if” kinds of analysis. 
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Figure 2: Flow of Model Data to and from the OODB
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III.    SUMMARY

 

The development of the control algorithm and model databases and their associated tools has been completed. Deployment
of the software awaits the opportunity to do so, depending on the accelerator operating schedule. The performance of the
ODBMS has met our expectations, but its performance can be sensitive to the organization of data within each database. This
is because of the way that ObjectStore performs caching of data. A data organization that results in access patterns which fre-
quently span more than a few megabytes will have a significantly worse performance that can be achieved with more localized
data accesses. 

The tight integration of ObjectStore and C++ makes building and using databases very easy for application developers.
Accessing data is as simple as a pointer dereference operation. The database management details are hidden from the developer
navigating the database. The flip side of this ease of use for developers is that fact that there is no generic user interface for all
data. Instead, the process of navigating the database is dependent on its internal data structure. User interfaces must be custom-
built for each database.

We are very happy with the ODBMS tool and are both developing and planning new databases. Some areas of interest at
this time are a model status database to track the availability of the various ARTEMIS processes, an event-logging database to
help account for beam uptime, and a database to serve as a repository for calibration data for the accelerator RF system. 
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