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Abstract
Progress in controlling the HERA machine at DESY with PCs is described, with emphasis on the use of
producer-consumer communication links.  To date the quench protection system for the superconducting
proton ring, the proton collimators, and major portions of the beam diagnostic control and RF controls are
incorporated in a control system using PCs running MS-DOS and WINDOWS-based software in a
NOVELL network environment.   Although dominated by PCs communicating with IPX protocols, the
system also supports IP-based communications for links to UNIX machines and VME CPUs.  HERA
Magnet control is still performed by NORD minicomputers, but the coming upgrade is also discussed in
the context of the PC magnet control system planned for the HERA pre-accelerators and peripheral
machines, which is now being tested in the PETRA and DORIS rings.

Introduction

The HERA (Hadron-Elektron Ring Anlage) accelerator at DESY consists of a 6.3 km electron storage ring
(30 GeV) straddling a 6.3 km superconducting proton storage ring (820 GeV).  Prior to injection into
HERA, electrons and protons undergo similar sequences of acceleration starting with LINACs, passing on
to small synchrotrons, and the PETRA ring.  The beams are then accelerated in the HERA rings, stored at
full energy, and brought into collision.  The design luminosity of 1.6E31 requires 210 bunches in each
ring.  Collisions are observed by the H1 and ZEUS experiments, each consisting of a large superconducting
solenoid surrounding the beam pipe at one of the interaction regions, and associated detectors.  The electron
beam can also be polarized and used to study nucleon spin structure, while the protons diffusing out of the
beam are used to produce (among other things) B mesons to study CP violation.

Since the smaller accelerators and the experiments have their own control systems, we can speak of the
HERA control system as referring only to the HERA machine.  However, we should keep in mind that each
system needs vital information from the others, so there has to be a mechanism for fast data exchange.  Of
necessity, each sub-system originally followed its own frenzied development during commissioning, and
each has its own view of the “Standard Model,” so establishing such a data-exchange mechanism is in some
cases no small task.

In this report we shall focus primarily on the HERA machine, but nonetheless present a few details
concerning data-exchange among the sub-systems.

The HERA Machine

Before we begin discussing the relative merits of PCs versus something else, let us first take a quick look
at what we have to control.  Beam storage and steering is achieved using magnets controlled by
approximately 1200 independently powered circuits in the two rings.  Setting and reading these magnet
currents is the primary task of the control system.  Acceleration is achieved via coordinated ramping of the
RF system frequency and voltage (consisting of 6 cavities and transmitters for the proton ring and over 80
for the electron ring) and the magnet currents.  Backgrounds are controlled by scraping off the beam halos
with 3 proton and 12 electron collimators.  There are independent proton and electron vacuum controls.  As
the proton magnets are superconducting, there is a separate cryogenics control for these elements, and an
associated quench protection system.  Monitoring the beam is of prime importance and to this end there are
~300 proton and ~300 electron Beam Position Monitors (BPMs), and approximately the same number of
proton and electron Beam Loss Monitors (BLMs) and associated Alarm modules.  As the proton BPMs have
a external trigger, there is also a separate HERA Integrated Timing system with corresponding trigger and
delay modules for each BPM.  There are several integrating beam current monitors for both electrons and
protons, as well as fast single and multi-bunch current monitors.  Likewise, there are several beam profile
monitors, including wire scanners and residual gas monitors.  The proton and electron tunes are also
monitored, as are various state parameters of the machine in general, such as tunnel temperature.



From the preceding paragraph, a dichotomy of controllable objects is clearly seen, namely those objects
related to diagnostics and those which actually control the beam.  In the case of diagnostics, under most
circumstances devices of a given type, say BPMs, can be read, controlled and coordinated from a single CPU
for the entire ring.  Furthermore, if such a CPU needs to be rebooted (for whatever reason), it does not affect
the machine to any great extent.  This is not necessarily true for a machine control object such as a magnet.
It might not be possible to control all such objects from a single CPU, necessitating distributed control in
some form or another, and if one of the controlling CPUs needs to be rebooted it could easily lead to loss of
control and in the worst case a beam abort.

PCs in HERA

1. What is a PC?

A relevant question these days is: When I say PC what do I mean?  Do I insist on a hardware definition
centered around the INTEL CPU and inexpensively priced end-units, or do I stick with an operating system
definition centered around Microsoft, or both?  Although, when people run LINUX on a PENTIUM they
still refer to the machine as a PC, and when the same people run NT on an ALPHA they don’t, in this
report we’ll generally abide by the third (i.e. both) definition, and go a step further and state that a HERA
PC is an INTEL machine which runs either MS-DOS or MS-WINDOWS 3.1.

2. Why PCs?

Looking at hardware, arguments concerning costs are compelling.  Granted, an extra high-end PC may come
in around the same price as a run-of-the-mill SPARC,  but one seldom needs a high-end PC.   In fact, since
old “forgotten PCs” can frequently do the controls job we’re interested in, hardware costs are sometimes
negligible.  Keeping in mind the age-old adage: “If we just want to go shopping, do we need to drive a
Mercedes?” we should always ask ourselves if we are just going shopping.

Looking at software, it’s not hard to beat MS-DOS and/or MS-WINDOWS as an operating system.  The
major shortcoming here is that the OS is not protected, and risks exposure to every vicious C program that
tries to run on it.  One should reiterate though, that neither MS-DOS nor MS-WINDOWS crashes by itself,
and healthy programs will run on it indeefinitely (although development can be agonizing).  Anyway, that’s
the down side.  The up side is that Microsoft has around 80 percent of the software market and is in no
danger of disappearing anytime soon.  There is an enormous culture base built around MS-WINDOWS, and
an impressive array of commercial software which already covers most of our needs.  The overwhelming
market share and user-feedback that Microsoft enjoys has essentially defined what is user friendly and what
isn’t.

3. When and Where to use PCs:

In truth there might be some times when we really do need a Mercedes.  It’s therefore important to 1) plan
for an integrated control system and 2) use the right tool for the right job.  So where is a PC the right tool
for the right job?

There is generally no disagreement that a PC can be effectively used at the CONSOLE side of the control
system (there might be some grumbling, but there is no major disagreement).  This is true since the
CONSOLEs are only displaying data and passing commands to the Front Ends.  They are not directly
steering control system hardware.  Since real-time is never an issue here, MS-WINDOWS is fine.
Furthermore if a rogue program gets loose on the CONSOLE and MS-WINDOWS crashes, you loose the
display, but nothing more serious than that.

When can PCs be used at the Front End?  This is a more contentious issue.  Even the most ardent
VxWorks enthusiasts will nonetheless concede that there are simple control tasks, which don’t need Real
Time by a long shot, and can be quite trivially controlled by a PC.  For example,  reading an ADC, which
monitors the ambient tunnel temperature every few minutes.  Such a task can be realized by a 286 PC
running MS-DOS (cost: ~100 $).  If the machine crashes (this will be a program bug, MS-DOS doesn’t
crash spontaneously),  you are in no danger of losing the beam.  Let’s take that a step further, and claim
that a good many diagnostic tasks can live quite happily on an MS-DOS machine with (for example) a



GPIB card.  Such dedicated diagnostic Front Ends, whose temporary disappearance (although a nuisance) is
not fatal, we shall refer to as simple FECs (Front End Computer).  Simple FECs are excellent candidates
for PCs.  By the way, this “temporary disappearance” might occur on any platform.  Whether a bug causes
the process to “core dump” or the machine to hang is immaterial.  You’ll still have to have a way of
dealing with it.

Beyond Simple FECs are Complex FECs, i.e. Front Ends with multiple tasks, and/or Real Time
requirements, and/or crucial importance.  At HERA, we have many PC FECs meeting all of these criteria
(Note: there are several Real Time Kernels for MS-DOS commercially available).  Nonetheless,  we prefer
to leave the case of Complex FECs an open issue, and assume that we have a multi-platform control
system.  Indeed, as we shall shortly see, we incorporate VxWorks FECs, and FECs running as servers on a
variety of UNIX and VMS machines.

4. Networked PCs

Following the “Standard Model”, the CONSOLEs and FECs at HERA reside on an ETHERNET.  In
addition, the PC FECs and CONSOLEs are attached to a NOVELL file server.  Furthermore, all control
system code is located on the file server (and not on the PC!), meaning that at boot time a PC logs in and
mounts network drives to the file server, and then loads and runs its code.  In the case of a CONSOLE or an
FEC running WINDOWS (most FECs run DOS), WINDOWS itself is also loaded from the file server.  As
WINDOWS generally has several open files and does considerable swapping, this does introduce a weakness
in that the connection to the file server is of paramount importance, since if the connection is lost the
workstation is almost guaranteed to crash.  On the other hand, all backup strategies can be entirely focused
on the file server.   The weakness can be (and will be this shutdown) patched by mirroring all relevant
software locally at login time, and always running from a local operating system.

Control System Model

So far, what we have described follows the so-called “Standard Model” of a control system, in that hardware-
near FECs communicate with user-near CONSOLEs over the ETHERNET.  We have not insisted,
however, that FECs are VME CPUs or that anyone is running UNIX.  On the contrary, we strive for a
multi-platform control system, where CONSOLEs and FECs communicate with each other without concern
as to what operating system is running at the other end.  With that in mind, we make the following ansatz:

∑ An FEC should present an integrated device to potential clients, i.e. a client should see an object
representation of the device to which it is speaking, be it a magnet, oscilloscope, BPM or whatever.  A
client should never deal with raw data, but instead receive data ready for display, and issue commands
via mnemonic properties.

This goes hand in hand with saying that any change of state made by a CONSOLE should be seen by all
other CONSOLEs.

Also important is that there should be no distributed control over the ETHERNET, requiring one FEC to be
crucially dependent upon knowing the state of another FEC.  To be sure, an FEC can be (and frequently is)
a client of another FEC.  However, the possibility that information might not come in on time or might
not come in at all should be anticipated.

It remains to discuss specific communication models CONSOLE to FEC, and at this juncture we should
mention our indebtedness to the ISOLDE project at CERN/PS and its developers.  The ISOLDE concept
was our starting point in 1991, and in some respects our system still bears a strong resemblance to
ISOLDE although our needs and development began to diverge rapidly from the original concept in late
1992.  Initially the communication model was pure client-server, in that a CONSOLE always asked an
FEC synchronously for data.  Polled data were requested from a timer on the CONSOLE.  Also to be noted
is that the original concept was a PC-only one and used only IPX-based protocols.  In 1993, IP-based
protocols were included, opening the door to non-PC communication partners.  The fundamental model
remained, however,  “client-server”.  FECs were servers, and did not supply data unless specifically asked
to.



Both IPX and IP communication channels were based on socket libraries, and specifically not commercial
RPC products.   This was largely owing to the fact that such products did not encompass both the IPX and
IP worlds at the same time, whereas (working with sockets) the application layer and network/transport
layers were easy to keep separate, facilitating development.

It soon became clear that certain data channels were of vital interest to a large number of CONSOLEs and
FECs.  These were items such as the energy and current of the proton and electron beams.  And rather than
having N clients request the present values of these parameters from one server (where N is a large number!)
it was decided to make such values available via broadcast.  To be efficient, the value is broadcast upon
change (according to an appropriate tolerance) or at the system heartbeat of once per minute.  In this way,
no one has to ask, one only has to listen.  Here, we are slipping over to a “producer-consumer” model of
data exchange, where an FEC is seen as a data “producer,” who is simply providing data to any “consumer”
who is listening.  An FEC should be rightfully regarded as a “producer” anyway, in that it should be in
background constantly reading hardware and preparing data for display.  Requests for data from the client side
should in most cases end up fetching data from RAM and not initiating a hardware read.

This pure “producer-consumer” model was only applied to the most important machine parameters,
however.  Nevertheless, a crucial step in the “producer-consumer” direction was taken in 1994, by adopting
a registered consumer model in which data links were now registered at the Front End instead of being
polled from the CONSOLE.  In other words, an FEC would keep track of a “mailing list” of consumers of
pertinent data.  A consumer could request values at a specific polling rate, or to be refreshed only upon
change.  The data would then arrive entirely asynchronously.  The reduction in wasted CPU time, not to
mention network traffic, in such a model is considerable!  It is not uncommon, for instance, to have a
popular control application, which might be getting a data update at 1 Hz, run on 15 to 20 different client
workstations.  Rather than having all 20 stations individually ask a server-FEC for data (one packet to the
FEC, plus a function call) and receive data (one packet from the FEC) at 1 Hz (times 20), the producer-FEC
keeps track of all 20 clients, makes one and only one function call at 1 Hz, and sends the data out to its
mailing list (one packet from the FEC times 20).  Furthermore, as the operation is connectionless and
asynchronous, there is never any waiting on the part of producer or consumer.

Acknowledgments are required under only one set of circumstances.  If a client has requested to be refreshed
only upon change of data, and the data have indeed changed, then the producer-FEC asks to be acknowledged
upon receipt of data.  Otherwise, a consumer-CONSOLE knows very well if its requested polling rate has
been met or not, or if the system heartbeat time of one minute has been exceeded.  If warranted, it will
sound an alarm and make an effort to relocate the FEC.  Similarly, when a consumer-CONSOLE registers
with an FEC, it subscribes for a certain quantity of data updates.  When the subscription runs down, it must
renew its subscription, or it will be removed from the FEC’s mailing list.  In this way, there can be no
dangling consumers.  Maximum efficiency regarding network traffic is maintained by packing together in
the same ETHERNET packet all subscriptions destined for the same consumer at the same time.

Command-based requests of course follow a client-server approach.  The client has the choice of sending
commands synchronously or asynchronously.  As the communication is connectionless, the turn around
time for request and reply is typically 2 to 3 milliseconds (IPX is marginally faster than UDP) plus any
time the FEC might need to read hardware.

These types of detail are of course hidden from the control system application programmer.  What he sees is
an API which tells him how to link data from a Front End into his control program, in the case of a
CONSOLE application, or how to offer data for linking, in the case of an FEC application.  Important is
only that the Front End device shows up as a tag name in the API.  The tag name is resolved at
initialization into an FEC address and an equipment function living on the FEC, both invisible to the API.
The FEC address will be either an IPX address, if both partners speak IPX, or an IP address.

At present, name resolution begins with a database file, which matches tag name to FEC name and
equipment function name.  This will be replaced by a name resolver during the 1996 winter shutdown.  An
FEC address is then established by the following:  If the client is not a PC attached to the control system
file server, then the local host table is scanned for the IP address of an entry whose alias matches the FEC
name.  If the client is a PC attached to the control file server, then the user list for the file server is scanned
for a user matching the FEC name.  If a match is found then an IPX address is established.  If no match is



found then the local host table is scanned for an IP entry.  All CONSOLEs speak both IPX and IP.  All PC
FECs speak IPX, and speak IP only if necessary.  And all non PC-FECs speak IP.  We should also
mention that there are non PC-clients to certain control system elements as well.  These are principally
machines outside the HERA control room,  and serve to integrate the various sub-systems of the HERA
machine and experiments.

An important element to the control system structure is the concept of the Data Server.  This is a machine
designed to acquire all important machine parameters at a sufficient rate so as to be able to act as a data
gateway to clients outside the immediate control sub-system.  It is both a client and a server with a large
number of channels, and is in general very busy.  This is nonetheless a much more efficient model for N
clients to obtain machine data, than for the same N clients to form individual links to potentially many
different front ends (largely owing to the data packing mechanism described earlier).  The most important
subset of machine parameters is broadcast from this machine as described above.  Furthermore, as this
machine always has an up-to-date record of the machine parameters, it also serves as the control system
archiver.

As to archiving, machine state variables are regularly archived (with appropriate filters) allowing data
retrieval and correlation throughout the year.  Similarly, critical events (such as a magnet quench) can
initiate archive dumps of the state of a particular subsystem at the time of the event.  This information is of
course of vital interest to the systems engineers.

The control system is also designed to be open, in that office client machines also have access to control
system data and applications, but with certain restrictions.  Namely, the FEC server itself always knows the
identity of the caller and can pre-specify a list of users with WRITE access.  READ access is generally
allowed since data READs do not change the state of the hardware.  Likewise, client applications can also
choose to hide options from under-privileged users.

HERA: Current Status

So where are the PCs in HERA?  As of this writing, CONSOLEs in the control room are either PCs
running WINDOWS or NORD mini-computers running SINTRAN, in approximately equal numbers, with
the NORDs living on borrowed time.  The current generation of PCs in the control room are 486 33 MHz
or 50 MHz machines.  These will likely be replaced by PENTIUMs in the coming year.

Most components of the proton beam diagnostic controls, as well as some electron diagnostic controls, are
incorporated on PC FECs running MS-DOS. A small minority run MS-WINDOWS, in cases where a user-
friendly GUI is important at the front end.  And there are also a number of non-PC FECs which are a fully
integrated part of the HERA control system.  These are summarized in Table 1.

As the data exchange mechanism described above has been ported to most platforms seen at DESY,  a
number of control sub-systems provide data server gateways and/or are clients to the HERA data server.
The Proton Vacuum and Cryogenics systems, for instance, both of which are autonomous control systems
in themselves, are persistent clients to the HERA data server.

HERA: Next Year

One of the last and most important steps in upgrading the existing HERA control system involves magnet
control.  As yet the 1200 electron and proton magnet controllers are driven by 4 NORD minicomputers.
There are two promising approaches currently being  tested at DESY.  One involves scaling the all-PC
PETRA control system to HERA, and the other involves using Symmetric Multi-Processing (SMP) on a
multi-CPU SUN workstation (see Herb and Wu, “Accelerator Magnet Control from an SMP Workstation”,
poster session this conference).  In any case, the 1200 individual channels necessitate a multi-CPU
approach.  The SMP solution would control all magnets from one computer whereas the PC solution
would span more than one.  The PC solution appears to work well in PETRA.  The number of magnets
there is considerably smaller, and all magnets can be controlled from one PC.  In HERA the horizontal and
vertical correctors could conceivably be controlled from separate PCs.



Table 1.  Front End Computers at HERA following the PKTR Control System Model.

FecName OS Description Hardware

ADDA DOS Hera Tune Control i386, GPIB

BEAMSCOP DOS Hera P X-channel/Y-channel Beam Scope Monitor i386, GPIB

BPM DOS Hera P BPMs,BLMs,MTMs,Delay Modules,Alarm
Loop Modules

i486, 4x SEDAC, V24

CMFL DOS Hera  P Fast Current (Lopez) monitor i386, GPIB

DATASERV DOS Hera P Data Server i486, Watchdog

BEAMCURR DOS Hera P and E beam current monitors i386, GPIB, SEDAC, Watchdog

FECSIM DOS Hera P development FEC i386, Watchdog

HERA208 DOS Hera RF (208 MHz) i486, SEDAC

HERA52 DOS Hera RF (52 MHz) i486, SEDAC

HERAQ DOS Hera P X and Y tunes i386, 2 DSPs

HIT DOS Hera Intgrated Timing i386, GPIB

PETRA52 DOS Petra RF (52 MHz) i486, SEDAC

SCRAPERS DOS Hera P Collimator Steering i386, SEDAC, Watchdog

OSZIS DOS Oscillascope Steering i386, GPIB, V24

IPS104 UNIX Orbit Correction HP

MKI101 UNIX Orbit Correction, Magnet Data HP

SUN1 UNIX Development SUN SPARC

SUN2 UNIX NORD Gateway SUN SPARC

EMIT_PP DOS Petra P Residual Gas Monitor i386, SEDAC

BLME DOS Hera E BLMs i486, 4x SEDAC

EMIT_HP DOS Hera P Residual Gas Monitor i386, SEDAC, ADC

ZLUM01 UNIX Zeus Lumi Workstation SGI

DORCAV DOS Doris Cavity i486, SEDAC

BUNCHCUR DOS Hera-P Bunch Current i386, GPIB

WIRE DOS Hera-B Wire Target i486, SEDAC

DORQ1 DOS Doris Q1 Sender i486, SEDAC

HFPET_R DOS Petra Sender i486, SEDAC

DORQ4 DOS Doris Q Sender i486, SEDAC

VWMASTER UNIX VxWorks (Development) VME, CAN

VWSLAVE UNIX VxWorks (Development) VME, CAN

PETRAQ DOS Petra Tune i286, 3 DSPs

PETRAI DOS Petra Beam Current i386, SEDAC

HFPET_L DOS Petra Sender i486, SEDAC

TIC DOS Hera Intgrated Timing i486. GPIB

TUNNEL_O DOS Tunnel Temperatures i386, SEDAC

TUNNEL_W DOS Tunnel Temperatures i386, SEDAC

DORFB DOS Doris Q2 Sender i486, SEDAC

BCURRE DOS E Beam Current i386, GPIB

LPSVAX VMS ZEUS Roman Pot Positions VAX

PROXY DOS Middleman FEC: Quench Proxy, Netmex Proxy i386, Watchdog

BLMDSY DOS DESY BLM FEC i386, SEDAC

DESYGAS DOS DESY Gas Monitor i486. GPIB

TUNEMOD DOS Hera Tune Modulator i486, GPIB

LPS_H1 WINDOWS H1 Roman Pot Positions i486, SEDAC

WINFEC WINDOWS Windows FEC simulator i486

DESYWS DOS DESY III Wire Scanner i486, SEDAC

HWEST DOS HERA Sender (Development) i486, SEDAC

HF_HE_SL DOS HERA Sender i486, SEDAC

HF_HE_SR DOS HERA Sender i486, SEDAC

HF_HE_OL DOS HERA Sender i486, SEDAC



Table 1.  Front End Computers at HERA ... (continued).

FecName OS Description Hardware

HF_HE_OR DOS HERA Sender i486, SEDAC

HF_HE_NL DOS HERA Sender i486, SEDAC

HF_HE_NR DOS HERA Sender i486, SEDAC

HF_HW_FB DOS HERA Sender i486, SEDAC

MKI102 UNIX Orbit Corrections HP

IPS109 UNIX Orbit Corrections HP

VWWEST1 VxWorks SPS Master VME, CAN

VWNORD1 VxWorks SPS Master VME, CAN

VWEAST1 VxWorks SPS Master VME, CAN

VWSUED1 VxWorks SPS Master VME, CAN

VWWEST0 VxWorks Transient Recorders VME, CAN

VWNORD0 VxWorks CPU 0 VME, CAN

VWEAST0 VxWorks CPU 0 VME, CAN

VWSUED0 VxWorks CPU 0 VME, CAN

VWWEST2 VxWorks SPS Slave VME, CAN

VWNORD2 VxWorks SPS Slave VME, CAN

VWEAST2 VxWorks SPS Slave VME, CAN

VWSUED2 VxWorks SPS Slave VME, CAN

ZIZI UNIX Zeus Lumi Data SGI

EMIT_HPS DOS HERA Gas Monitor i486, GPIB

DESYSCOP WINDOWS DESY Scope Gas Monitor i486, GPIB

The PETRA model is worth mentioning here.  For one thing, it is a much more homogeneous model
where all of the players (with very few exceptions) are PCs running MS-WINDOWS.  This in itself has
merit, as we shall shortly see.  Furthermore, the control system ETHERNET segment is kept isolated, with
only a gateway interface to the outside.  Most of the traffic on that segment is restricted to pure producer-
consumer traffic, or rather “producer traffic.”  Data are flushed from the front ends onto the net via broadcast
at a cycle frequency of 1 or perhaps 2 Hz.  The consumers only listen; they don’t introduce any extra traffic.
Of course allowing commands from the console necessarily implies that client-server traffic also appears
from time to time, but not in sufficient quantity to upset the overall loading.

Which, if either, of these solutions will be adopted remains to be seen.  However,  we should note that if
the SMP approach is adopted, this will add yet another make of 'Mercedes' on the control system.  Is this
bad, good, or irrelevant?

There is much to be said for keeping a system as homogeneous as possible.  The expertise developed in
dealing with a specific platform is then shared by many, and no one person ever becomes indispensable.  On
the other hand, there is also a danger in putting all of our eggs in one basket (however mighty Microsoft or
Wind River appears at the time).  In this regard it is perhaps more prudent to relax our definition
ofhomogeneous a bit.  In the end, “How we got there” is more important than “Where we went.”  In other
words, if I can take the same code and compile and run it on another platform with minimal effort, then my
learning curve on the new platform is not so steep.  On the contrary, I am likely to feel at home in my new
environment, and my general knowledge will increase steeply.  I then also have the ability to “plug and
play” at the front end, where (as long as I adhere to our initial ansatz of the control system model) I can
completely alter the machine and reconnect it to the control system, without any of the other participants
knowing.  Rather, the application layer will know that something has changed and figure out how to deal
with it, but the applications programmer still sees the same object on the other side of the API.

As to the data exchange mechanism, the homogeneity of the HERA system lies in the API, which is an
identical C interface across all of the previously mentioned platforms.  Reading hardware might of course
require a completely different expertise on one system than on another, and in this light there remains a



strong bias in sticking to the PC environment.  Nonetheless, as UNIX offers a fairly standard working
environment across many platforms, UNIX solutions to controls problems are not to be avoided, on the
general principle of hedging our bets.  Being able to easily incorporate a special UNIX solution to a
controls problem and at the same time to allow an engineer who has tested and developed his hardware with
a PC to trivially include his work in the control system proper are both good capabilities to have.

The waters will undoubtedly be muddied even further in 1996 as the control system API will be ported to
WINDOWS-NT, i.e. to the WIN32 API.

C or C++ is the natural language of choice when interfacing with the control system API.  The notable
exception is under WINDOWS where, since it offers such an outstanding GUI, Visual Basic is used.  Visual
Basic itself fills a development tools niche so well that there has been over the past two years a flurry of
activity from several vendors either to offer something similar (or better) or to port Visual Basic to non-PC
platforms.  The ease with which one can learn and program something useful with Visual Basic is
astounding.  This point should not be taken lightly, as a good many of our own CONSOLE applications
have been written in this language by machine physicists whose last programming experience had been
FORTRAN IV several years ago.  This in turn enables the software engineers to devote more time at lower
systems levels.  Future incarnations of Visual Basic will almost certainly offer inheritance and
polymorphism to its GUI objects, making it a legitimate object oriented language.

Acknowledgments

I would like to express my indebtedness to A. Pace and I. Deloose at CERN/PS for many of the thoughts
and ideas presented here.  I would also like to explicitly thank S. Herb, K.H. Mess, H.G. Wu, and F. Peters
for many useful discussions and rounds of constructive bickering.


