
Managing an Evolving Control Environment

G. Neu, R. Cole *, K. Lüddecke *, G. Raupp, W. Treutterer, D. Zasche , T. Zehetbauer
Max Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany
*Unlimited Computer Systems GmbH, München, Germany

ABSTRACT

The tokamak ASDEX Upgrade is equipped with a fully digital machine and discharge control system.
Long term operation and continuous upgrading of such a system must allow for changes of physical
discharge definition, real-time control procedures and I/O system peripherals. A system administration
platform is under construction to keep track of the real-time system’s relevant process and signal
inventory along with its evolution and which allowsone to check its consistency with the discharge
definition selected for the execution of actual experiments.

1 INTRODUCTION

During their lifetime the control systems of large experimental devices undergo frequent modifications.
Improvements and optimization measures are carried out continuously to achieve higher performance,
functionality, operability and reliability. Constant evolution is not an indicator of bad design but a
measure of the important role the control system plays in the experimental set-up.

System evolution of an experimental control environment may be characterised by three separate but
interdependent modification cycles, Figure 1. Device operation is based on the variation of discharge
parameters collected in the discharge definition and observation of the resulting changes in physical key
parameters from cycle to cycle. The set of discharge parameters is modified by the physicist in charge,
typically on a hourly timescale. Knowledge gained during operation periods leads to the improvement of
existing, and development of new, control algorithms and methods. Hence the real-time software will
have to undergo modification by the software engineer. Change of the control software or availability of
new or improved sensor signals or actuator can require modification of the peripheral I/O hardware.
Component failures require instant replacement of modules during the operation of an experiment, and as
a result, peripheral I/O hardware can and will be reorganized and altered by the technical staff.

To guarantee correct operation of the control system all these modifications have to be made
consistently. Due to the
system size, with a large
number of hardware and
software components and its
complexity and
interdependencies, it is
extremely difficult if not
prohibitive to keep track
manually of the consequence
of any intervention. This is
especially difficult as many
scientists, engineers and
technicians collaborate in the
execution of these tasks, all
with their own scope and
knowledge.

What is therefore needed is
a management concept which,
based on information about the
real-time system’s relevant
process and signal inventory
and their evolution, ensures
consistency with the discharge
definition selected for execution. In this paper we will decribe the ASDEX Upgrade discharge control
environment and its parametrization, and derive requirements for a system administration platform,
Chapters 2 and 3. In Chapters 4 and 5 adequate information representation mechanisms are introduced
which help to describe the control processes and signals and retrieve appropriate information. These are
used to validate the physical discharge definition and to create an executable discharge programme.

Control
Processes

Discharge
Definition

Peripheral
Hardware

physicists define
desired values
for discharge

technicians modify
modules and signal paths

software engineers
implement new
processes for real
time controllers

xxxxx
 xxxxxx
xxxxx
 xxxxx
 xxxxx

Fig. 1 : Modification Cycles in System Evolution

2 ASDEX UPGRADE DISCHARGE CONTROL SYSTEM

ASDEX-Upgrade is a mid-sized divertor tokamak designed for investigation of plasma boundary
physics and wall interaction in various geometries and under conditions similar to those in a fusion
reactor. Physical control tasks range from the active stabilization of the plasma’s position in the vessel
and the shaping of its outer countour, to control of refueling and heating systems by feedforward access or
feedback of plasma quantities and monitoring of technical subsystems and overall technical and physical
discharge status. To perform these real-time control tasks and to operate the machine in the most flexible
way ASDEX-Upgrade has been equipped with a fully digital control environment as indicated in Figure 2.

The discharge control system (DCS) is a hierarchical cluster of transputer-based computers running a
multitude of real-time monitoring, feed-forward, and feed-back control processes. Processes require
information on hundreds of actual physical and technical quantities and access to tens of technical
actuators to act back onto the plasma. I/O is performed via a widespread system of peripheral hardware
modules. Each controller transfers its output data to and receives input from specified interface points
which relate to the diagnostic sensors and technical actuators previously configured by the machine
control system (MCS).

An experiment management (XPM) software platform integrates MCS and DCS for automated
experiment operation. It serves as a user interface for the technical operator and processes his commands,
hiding the associated complex time ordered sequences of actions and information exchange between the
distributed systems [1]. The core of the DCS is the real time control processes. These are specified by
experimentalists and control system designers and implemented as code modules by the software engineer.
Each process performs operations on time-varying signals. For each process an entry in a header file
exists which provides identification of all its signals and defines their usage.

Signals can be subdivided into I/O ones characterized by their transfer characteristics, addresses, and
format and reference parameter signals whose values must be provided in the discharge program. A
manually maintainded global quantity descriptor database (QTD) contains the defining characteristics of all
signals in the DCS.

It is via the peripheral hardware that processes access actuators and sensors to interact with the
experiment. When a signal coming from a diagnostic sensor’s interface point reaches the computer port, it
will have passed through a series of modules such as decoupling and pre- amplifiers, ADC or digital
input, multiplexors, parallel to serial converters and optical and electrical transmission lines. This also

ASDEX-Upgrade Experiment

DIAGNOSTICS

local area net
configuration
measurements and
output values

XPM

I/O

SENSORS ACTUATORS

DISCHARGE
PROGRAM

DCS MCS

Fig. 2 : ASDEX Upgrade Control System Environment

holds for an output signal on its way to an actuator’s interface point. Signal paths are specified by the
control system designer and set up by the technical staff to meet the format and transmission
characteristics required by the control computer to correctly access, identify and interpret a signal. Beyond
the interface points, sensor and actuator
characteristics have to be known to
correctly interpret an I/O signal. Whereas
the latter are set in the MCS, the former
are input both into the QTD entry of the
corresponding input signal and into a
diagnostics database.

To prepare specific experiments the
physicist designs a discharge definition
consisting of the full set of desired
signals required to parametrize a given
control software version. A signal
oriented editor is used to input values for
configuration switches for process
activation, desired values for monitoring
trajectories, parameter switches and
associated timebases. The executable
discharge programme is created by
linking the discharge definition, the MCS operation parameters defining actuator characteristics, and the
peripheral I/O system’s transfer characteristics and sensor characteristics as given in the QTD. The
dependencies of these various inputs are shown in Figure 3.

3 REQUIREMENTS FOR CONTROL SYSTEM ADMINISTRATION

There are a number of ways in which inconsistencies can be introduced into this system. Major
changes in functionality begin with the specification of a new process description which leads to the
implementation of a new code version. If new signals are required these are specified in the QTD.
Necessary modifications of the I/O configuration (e. g. additional I/O signals, changes in I/O format,
rearrangement of already existing signals) have to be implemented in the peripheral hardware, including
diagnostics sensors, and the corresponding updates made in the QTD. One should note that inserting or
replacing a single mux module may mean having to recompute the transfer characteristics of several
signals. Finally, the I/O routines of the control computers have to be adapted. Discharge definitions
which were not designed for the new software must be enhanced and/or modified to account for new
signals or signals whose usage has changed.

Clearly consistency is not enforced by the system described above and information required to validate
a scheme is not provided automatically. The description of the process structure and lists of signals of a
given software version - needed to define a consistent discharge description - must be manually assembled
by inspecting the configuration files in the source code. There is also no true description of the I/O
hardware structure at the module level - needed by the technician to assess the impact of changes on the
I/O signal entries of the QTD. Modifications in the sensor characteristics are usually protocolled in the
diagnostics database from which they have to be manually transferred into the QTD.

From the above considerations it is clear that maintaining consistency within the control system is far
from trivial. It relies on the correct interplay between control processes and peripheral hardware and
between control processes and discharge definition. All of these are independently configured and modified
by different people and on different timescales.

An ideal solution would be a complete model descriprion of the entire system software and hardware,
which could be used to allocate and parametrize real-time processes and activate and configure real-time
I/Oo hardware. With the given system complexity and implementation resources, however, such an
approach is currently far from being realised.

To provide the flexibility required by experiment goals or operation procedures, the ability to change
control system characteristics is fundamental. Hence, what has to be provided are supporting measures for
the prevention and the detection of inconsistencies.

A first step towards prevention is an organization of system information avoiding multiple definition,
and an adequate and correct representation of this information. Whenever changes are made it should be
clear where the corresponding information is maintained, and mechanisms should exist which update
related information automatically. Any intervention should be based on reliable and precise knowledge of
the set-up of the components to be handled. For the physicist designing a discharge definition, the
information of interest would be an inventory list organized by process of all signals required in a
downloaded software version; a software engineer can draw valuable information from a visual
representation of a controller’s process structure; and a technician will appreciate an I/O hardware
representation which will allow him/her to modify module descriptions instead of having to go through
endless lists of I/O signals

QTD

EDITOR

MCSLINKER

provides editor with list
of all editable signals

actuator
characteristics

sensor
and peripheral
transfer
characteristics

manually entered
information

DISCHARGE
DEFINITION

QTD

i/o

value signals

DISCHARGE
PROGRAMME

Fig. 3 : Assembling a Discharge Programme

Detection of inconsistencies relies on the specification of rules which define the relations between
information from the various components of the system. Instances must be created which implement
these rules and extract the relevant information.

4 REPRESENTATION OF THE PERIPHERAL HARDWARE

In the previous chapters we have seen that a useful description of the peripheral hardware must be
module oriented. It must mirror the installed I/O system’s structure to facilitate maintainability, and it
must allow the retrieval of the actual signal I/O characteristics to be processed by the controller at a given
port.

The general strategy in modelling the peripheral hardware is straightforward - the real-world hardware
modules are represented as module descriptions, including board and transfer characteristics. The real-world
hardware connections between module I/O ports are represented as connection descriptions. The end points
of this peripheral I/O system to the other system components are a sensor/actuator description on the
peripheral side to sum up the characteristics of the signal preprocessing hardware outside the control
system, and a controller port description as the end point of a fiber optic transmission line to define the
interface to the controller internal process description.

Any relational database can serve as an implementation platform. For each type of module templates
must be provided which define its static and variable properties and characteristics. Examples of static
properties are the type description, front panel set-up, number and kind of I/O connections, and connector
type. Even before being actually used a specific module will allow personalization of its representation.
This is done by assigning values to some of the module's variables: a serial number for future
identification is defined, values for specific parameters are set (e.g. the addresses of multiplex channels or
amplification factors), status (never used, repaired, modified ...). Finally, when the module is installed, a
location description and interconnections with other modules can be put into the description. Special
‘modules’ describe the two ends of the peripheral hardware: on the one side the controller I/O boards with
ports, and on the other side virtual modules which describe the interface points with the sensors and
actuators of the experiment. A sensor module will typically contain the name and characteristics of a
sensor and one entry describing its connection to some module of the peripheral hardware.

Such a model
representation describes
the entire I/O hardware
system topology and
transfer characteristices,
using all required
information and avoiding
redundancy. The transfer
scalings of a peripheral
signal on its way to a
controller can simply be
inferred by stepping
through the modules and
extracting the local
transfer characteristics
along the signal path. To
check whether a signal
path is consistent with
given controller software
all that is needed is the
relation connecting the signal name to an actuator or sensor and the information concerning at which port
that signal is expected by the controller, Figure 4.

If the loop indicated in the figure can be closed the signal path exists and the signal can be accessed
with the actually derived I/O characteristics. The latter are then automatically updated in the signal
description of the QTD. Otherwise, the signal path hardware is not installed correctly or the physicist’s
specification to use a particular sensor/actuator as a control signal is wrong or the control process expects
the signal at another port or not at all. In such a case, the model description can assist in debugging by
giving information on where the loop is broken, where the signal path ends or which set of signals is
actually sent to a given port.

5 ADMINISTRATION OF THE PROCESS STRUCTURE

Enhancing the software of an evolving real-time system to provide the functionalities required for
administration is both difficult and inefficient. This is especially true for a distributed system running on
a variety of platforms and programmed in different languages. Checking the compatibility of a given

PERIPHERAL
HARDWARE

MODEL

SIGNAL
DESCRIPTION

PROCESS
DESCRIPTION

SignalPort
Sensor/
Actuator Signal

Sensor/
Actuator Port

transfer characteristics

module & connection
 descriptions

Fig. 4 : Application of the Peripheral Hardware Representation

peripheral hardware set-up or the completeness and correctness of a discharge description would mean
having to activate all controllers and related subsystems.

Therefore, to deal with this problem at ASDEX Upgrade a generic model was devised, which can be
configured for various software versions and parametrized by arbitrary discharge programs. To keep it as
simple as possible, the model only contains those data structures and rules or functions strictly necessary
to perform the desired administrative tasks.

The hierarchical architecture
of the model reflects both the
existing software structure and
the tasks to be performed. Rules
can be classified according to
their complexity and generality.
Whereas some checks can be
performed locally and by every
process (e.g. determining
whether all signals it requires are
included in a given discharge
program), others will decompose
into sequences of specific
actions. As an example for the
latter, consider the real time task
of controlling the antenna
coupling of the ICRH. Its
implementation in ASDEX
Upgrade’s control system
software requires the cooperation
of two control processes running
on different controllers [2].
When activated, the first one
feedback-controls the antenna
coupling by computing a desired
gap between antenna and plasma
boundary. Provided the second process is configured to control the outer radius of the plasma and to
receive this desired value as input, it will compute currents for fast control. The correct execution hence
relies on particular settings of various software control switches and on the definition of desired values and
gain factors for both processes.

The model has been specified using an Object Oriented (OO) paradigm, and a prototype is currently
being implemented in C++. The process class library contains classes ranging from basic template
processes, elementary processes (e.g. single-variable PID controller) to derived classes defining the
complete process structure of a real-time controller. Inherent properties of OO methodologies such as
encapsulation of methods and structures into a class, inheritance in derived classes and polymorphism of
methods were helpful in designing a library of reusable and easy-to-enhance modules.

The generation of a particular model instance is performed using customized methods which address
configuration tables declared in header files of the original source code of the control software. This
guarantees that the model structure corresponds to that of the target system, see Figure 5.

Once a model has been activated, it can provide the discharge definition editor with the lists of
processes and those signals which have to be defined for a complete discharge definition. A similar list is
passed on to the linking editor, which will add to the discharge programme only those I/O-signal
descriptions which are actually needed. Finally, the discharge programme can be validated according to the
methods defined in the classes of the process class library.

6 CONCLUSION

In an evolving control system for a large experiment such as ASDEX Upgrade, control processes,
discharge definitions and peripheral hardware are modified continuously. In the past, a system description
was obtained by entering critical information manually into a set of unrelated databases. This carries the
risk of introducing inconsistencies. With the new approach presented here a system description is extracted
from the installed hardware and software modules, and rules are added. Within this system model,
consistency checks can be performed and discharge programmes can be generated and validated. We expect
this approach to considerably improve the management of change within ASDEX Upgrade’s control
environment

REFERENCES

SOURCE CODE

CONFIG. FILES

RUN
TIME
CODE

DISCHARGE
DEFINITIONEDITOR LINKER

list of
required
signals
ordered
process-wise

for
validation

CLASS LIBRARY DISCHARGE
PROGRAMME

for
execution

list of
required
signals

only modifies
signals from list

filters out signals
not in list

PROCESS
MODEL

INSTANCE

Fig.5 : Process Model: Creation and Application

[1] Richter, et al.:"Overview of the ASDEX Upgrade Experiment Management Software" ; Proc. 17th
Symposium on Fusion Technology, Roma (I), 1992, p. 1077

[2] T. Zehetbauer, et al. :"Management of RT Processes for Plasma Parameter Optimization at ASDEX
Upgrade" ; Proc. 9th Conference on Real-Time Computer Applications in Nuclear, Particle and
Plasma Physics, Chicago, (USA), 1995

