FDL, a Deterministic
100 Mbytes/sec Data Link

J. Bovier, J-F. Gilot
Crestive Electronic Systems

Abstract

Data transfers in red time gpplications needs more than just a speed incresse to meet the new
constraints of data acquisition and control systems. Daa gathering from multiple sources, labeling,
transfer scheduling and data scattering to multiple destinations are of primary importance,

Over the past few years the power of processing units usedin red time data acouisition and control systems has incressed by
afactor of 100 (from 1 mips to 100 mips) thanks to the avalaility of RISC-based microcontrollers with dock rates wdl
above 100 MHz. Instructions are now executed in less than 10 ns if cache memory is used In order to make the best use of
this power, externa agents are needed to move data to and from processors’ memories.

Intdligent I/O boards have been provided to rdieve the processing units of drect instrument control and data transfer
protocol management. They pack datain buffers ready to be grabbed for processing. The missing piece in this scheme is an
autonomous system able to gather data from 1/0 boards and scatter it to processors memories a speeds matching those of
the processors.

The Fast Data Link (FDL) is a set of hardware and software tools designed to transfer data
"intelligently" between multiple sources and destinations.

The backbone of the FDL is a multimaster/multidrop (up to 15 nodes) copper link synchronised & 50 MHz. The physicd
support is a cable composed of 25 twisted pairs (16 data- 2 parity - 7 control signds) extendng over a maximum dstance
of 30 meters.

SCHEDULING BRIDGE DESTINATION

DESTINATION

GATHERING LABELLING f ROUTING SCATTERING

DESTINATION

Figure 1. FDL General Concept

The dient/server gpproach has been chosen in designing FDL interfaces. Upon request of a dient or occurrence of an
externd event, the interface gathers data from deta acquisition busses, dud ported memories or registers and stores it locdly
in an interemed ae buffer. Information is then added to the data packet before transfer over the link so tha each data packet
contans routing parameters. In the destination nodes data packets are routed to ther find destinations.

A point-to-point fibre optic link has been designed to interconnect a full speedlocd FDL networks over long dstances. Up
to 15 opticd connections can be implemented from alocd network.

Information is transmitted over the FDL in units of "cells". A cell is a sequence of 18 words (of 16
bits) emitted by the current master every 20 ns.

Thelink is source-synchronised The current master drives the dlock signa and sends one data word every cdock cyde The
cdl synchronisation signd ind cates to the slave nodes the beginning of an 18 wordcdl. The first two words of every cdl
contan routing information (destination node identifier, cdl identifier, destination buffer identifier, etc.) They are generated
by the FDL master port and decoded by the FDL slave port. The payload of acdl is 32 bytes.

D15 DO
word #0 bridge_id node_id sc|lc| X cell_id
word #1 |[prio] X [X | X | type | X [X buffer_id
word #2 | | R
— payload 32 bytes —
word #17 I I S I S I S S A N

Figure 2. Cell Structure

| data#0 |[lheade

32>=N>=0

data from source destination parameters

Figure 3. Data Packet Structure

For datatransfer, cdls are organised in packets of up to 1 kbyte (32 cdls maximum) preceded by a header cdl containing
parameters for the find destination. Thus routing and administrative information imposes overhead of 14%.

Single cdls are used for FDL management. The FDL offers two levds of priority for cdl transmission to dlow
management cd s to take precedence over datacdls. When no node has cdls to tranamit, the current FDL master transmits
empty cdls to mantan link synchronisation.

The FDL is a deterministic link. The arbitration mechanism guarantees a defined data transfer rate
and the maximum latency for bus mastership attribution.

To offer fair access to the link, bus arbitration is assumed by the current master. This implements a rotating arbitration. A
requesting node asserts the Bus Request signd at the beginning of a cdl; the current master grants the bus a the beginning
of thenext cdl. This alows the next requesting noce in the arbitration daisy chain to own link mastership before the end of
the second cd | following the Bus Request assertion. This mechanism fixes the latency for a change of master & 720 ns +
time of flight between current master and requester (40-150 ns).

latency: < 1 us

In addition the link shares ownership fairly amongst requesting nodes, thus guarantesing minimum latency for deta transfer
completion. For a fully loaded link the overhead for arbitration is one time of flight every two cdls. Dependng on the
physicd length of the link the average arbitration overhead is then between 6 and 20%.

The nomind transfer rate of the link is 100 Mbyte'sec x (1.0-Overheed fraction). The average transfer rate is the nomind
transfer rate dvided by the average number of requesting nodes.

——
DATA
VME
SLAVE
PORT
[——
CLIENT
. VME
rioger N SK;EQM MASTER
PORT
FDL8050

— O

xZ -

SYSRAM
512k

FDL8050 2 I

trigger R3052

v
2
o]
o
C

Figure 4. FDL8050 VME interface

The FDL8050 interface is a VME server designed to transfer data between VME crates at rates up to
70 Mbyte/sec. A client is any VME master able to access the FDL8050's VME slave port.

The centrd part of the VME/FDL interfaceis afast dud ported memory (BUFRAM) accessed by two block movers a 200
Mbytes/sec. Thefirst one (V_BMA) gathers/scaters data from/to the VME bus. It packs the deta which it reads into blocks

up to 1 kbytein size. The second one moves data packets between the BUFRAM and the link. It handes link protocol and
packet fragmentation into cdls.

The two block movers are controlled by a RISC microprocessor (R_CPU (mips R3052)) managing data transfer and
communication with clients. The system memory (SYSRAM) is accessible from both the V_BMA andthe VME bus. This
featureis used to implement a 64 kbyte mirror memory. Externd trigger lines are connected to the microprocessor. They
are used for event generation.

The transmission mechanism uses request fifos (of 256 words) to keep both BMAs busy with data
packets for transfer.

To trigger aV_BMA datatransfer, the R_CPU prepares atransfer descriptor in the SYSRAM and then posts the descriptor
index inthe V_BMA request fifo. The V_BMA is built aound an R3051 microprocessor in order to hande complex VME
transfer descriptors. It checks for block boundaries and recovers from bus erors in less than 1 ps. At the end of the transfer
theV_BMA updktes the descriptor with the transfer status and writes the descriptor index into the V_BMA status fifo. |If
required, control information such as sequence number, time stamp, etc. is added to the data packet.

The R_CPU builds the header cdl with find routing parameters in the HEADRAM, and posts the cdl index in the
F_BMA request fifo. The F_BMA then transfers the header cdl followed by the associated data cdls over the link. At the
end of the transfer the cdl index is written in the F_ BMA status fifo.

The destination node catches cdls containing its own node identifier and stores them in the BUFRAM. The HEADRAM
holds the header cdl and the F_BMA status fifo the cdl index. The R_CPU reads the heeder cdl and builds a transfer
descriptor for the V_BMA. It then triggers the V_BMA to transfer the data packet from BUFRAM to VME. A single cdl
containing an acknowl edge from the data packet transfer is sent back to the transmitter for flow control.

A 12-stage transmission pipeline has been implemented to maximise data throughput while
controlling arrival of data packets. Up to 8 VME transfers can be concurrently active.

High priority single cdls (service cdls) are transmitted over the link for system management; they take precedence over data
cdlsfor link access A dedicated F_BMA request fifo is usedto post these cdls, the HEADRAM contains room for 256 of
them, which are drectly handed by the R_CPU. These service cdls are used for data transfer acknowledge, remote reguest,
event generation and time synchroni sation.

The FDL supports time stamping of data packets and transfer synchronisation (isochronous mode). To this end every FDL
interface has a hardware dock running a 1 MHz. Theinterface maintains a cdendar time accessible by VME dients. One
nocein an FDL system keeps the globa time reference and every 10 ms it broadcasts this reference vaue to other nodes.
Time synchronisation service cdls are drectly handed by the interface hardwvare.

Special timers (25 MHz) on FDL interfaces allow a time synchronisation of all nodes with an
accuracy of 1 ps.

The FDL supports two scheduling modes for deta transfers. In the asynchronous mode they are triggered by an externd event
(dient request, VME interrupt, front pand trigger, etc.) and are handed by the server on afirst-in first-out basis. In the
isochronous mode data transfers are activated period cadly a a user-chosen frequency. The two modes of datatransfers can be
mixed.

When the isochronous phase occurs, dl asynchronous data transfers are suspended and a pre-defined transfer descriptor is
given to the R_CPU for processing. At the end of the isochronous phase (the duration is programmable) asynchronous deta
transfers are resumed A specid F_BMA request fifo is used to post isochronous ceta transfers in order to dlow instant
switching between isochronous and asynchronous modes.

The isochronous mocke has been implemented to dlow dl FDL interfaces to activate specid datatransfers periodcdly a the
same time. This ensures the time coherence of the data collected by the system.

SYSRAM

REQUEST BLOCK
(64 bytes)

Status
d
o h REQUEST
TABLE
req_blk #i

parameters

req_blk #127

REGISTERS

e
FREE REQ
PEND REQ

Figure 5. FDL8050 programmer's interface

The VME dients interact with the FDL interface through a shared data structure located in the SYSRAM. Two hardvare
registers (FREE_REQ and PEND_REQ) are used to control access to that structure Remote resat of the interfece is
activated by writing in the reset register. Up to 127 connection channels can be opened a atime to these VME dients.
Each communication channd is controlled by a 64 byte request block in which the dient posts the transfer parameters.

The FDL firmware supports drect and indrect deta transfers. For drect deta transfers the dient provides dl routing
parameters in the request block. In the indrect mode the client provides the reference of a transfer descriptor. Transfer
descriptors are linked lists of dementary transfer parameters (chained list of buffers, drect rings, indrect rings, ec.). These
transfer descriptors can be pre-defined through a resource crestion mechanism, or can be read by the FDL a transfer time.
The FDL firmware supports the cregtion of remote transfer descriptors in order to hand e indirect transfers in destinations.

The server supports 8 leves of priority for dient requests and handes progranmable time-out. Broadcast to multiple VME
destinations has been emulated in order to implement protocols such as TCP-IP.

Device drivers for the most popular operating systems have been written to control the FDL8050 interface. If the driver is
linked with the TCP-IP layer, aworkstation can be used as a gateway to pass TCP-IP packets over the FDL. This dlows a
VME multiprocessor system to be controlled from alocd area network while fast data transfers are going on between VME
crates.

Interfaces to other busses such PCI, CAMAC, FASTBUS, ec. are under devdopment in order to build complete data
acquisition and control systems. We fed that PCI will be a standard in future workstations. The PCI/FDL interface will be
used to push data drectly into workstation memories under control of the operating system, so the data will be drectly
available to deta processing software.

We will dso provide embedded FDL interfaces to be drectly implemented in instruments and detectors in which aregister or
a dud -ported memory will be used to post deta for transfer over the link.

The performance of ared time system depends mainly on three parameters: the processing power, the interrupt
response and the data transfer rae The only way to maximise dl these parameters simultaneously is to make them
independent by dedicating specidised hardware to each of them. The FDL has been designed to maximise daa transfer
without compromising processing power or interrupt response.

