

ABSTRACT

A common controls requirement is to be able to quickly add support for serial, GPIB, and various data acquisition
devices. HiDEOS software provides a means to easily create and maintain low-level device drivers and higher-level
control tasks. HiDEOS has an object-oriented task model which hides most operating system details, allowing the
user to concentrate on operating the device. HiDEOS imposes a message passing system on the user for interprocess
communication, so existing control systems can easily request information and receive results.

INTRODUCTION

HiDEOS is a software package designed as an addition to the Advanced Photon Source (APS) control system. The
initial implementation is on the Motorola MVME162 embedded controller, to operate the Industry Pack (IP) Bus and
a set of IP modules. Instruments and sensors attached to the IP modules are also operated by the HiDEOS software
package. HiDEOS combines parallel processing and object-oriented techniques to produce an operating system shell
using the C++ language. The primary function of the operating system shell, in the context of the APS, is to allow a
user to easily create, maintain, and integrate device drivers and algorithms into the control system. Many of the tar-
geted instruments have serial or GPIB type communications that require a dialog or protocol.

HiDEOS utilizes object-oriented techniques to encapsulate operating system and hardware resources. All components
of the operating system are implemented as objects. A user’s program is actually viewed as a subclass of the system
process. Users interact with the operating system by using methods of the parent class. HiDEOS is a message-driven
system, a concept usually associated with parallel processing, where processes get scheduled by the presence of work
in the form of a message sent to them. Messages can span CPU boundaries, allowing a problem to be distributed. The
package includes a preemptive, multi-tasking kernel for use on a board with no operating system. The kernel is cur-
rently capable of running the MVME162 without an additional operating system.

A major goal is to view a running system as a collection of independent message processing nodes, with each node
being responsible for a particular piece of equipment, running a protocol, or performing an algorithm. Nodes can find
other nodes in the system by using a character string name, attach themselves, and send messages back and forth. A
node can be resident on any one of a group of CPUs running HiDEOS. The current implementation requires CPUs to
be on the same backplane. An application developer or processing node developer does not need to know which CPU
a destination process will be running on. Calls to send and receive messages are the same for processes on a remote
CPU or the same CPU. This methodology is illustrated with a real-world problem. A control system must interact
with a PLC where the only way to communicate is a serial link. The problem can be logically broken into three sec-
tions (see Figure 1), each of which require different system knowledge: an interface procedure to communicate
results to and get information from the control system, a protocol driver that can have a dialog with the PLC, and a
serial link driver that can actually pump data down and retrieve data from the serial link. With HiDEOS, this problem
can be viewed as three separate nodes, linked together with a message pipe. Developers of each module can now
solve their own problem, and not worry about the mechanism that will transfer data from one node to the next or
which CPU will be running the process.

The current implementation of HiDEOS basically consists of six major components. Together these components
allow for basic operating system functionality including interprocess communications. The major components are
message management, name service, task management, task dispatching, resource management, and utilities. A typi-
cal application running under HiDEOS resides within the task management component. The task is an important and
fundamental unit of HiDEOS. The task can make use of board-level services such as tick timers and bus controllers
using the resource management component or lock out interrupts using one of the utilities. The task can locate other

An Object-Oriented Approach to Low-Level Instrumentation Control and
Support

J.B.Kowalkowski
Advanced Photon Source

Argonne National Laboratory

tasks in a group of processors running HiDEOS using the name service component. A task can use the message pass-
ing facility to locate the destination task and send or receive understood message structures using the message man-
agement component.

FIGURE 1. Processing Nodes

SYSTEM COMPONENTS

To create a task in HiDEOS, the user must derive a class from the TaskBase class. An actual running task is generated
when an instance of the user’s derived class is constructed (created). A typical HiDEOS user task has the derivation
shown in the class structure diagram of Figure 2. The TaskBase class controls most low-level aspects of a process. A
TaskBase instance, to a large degree, is in control of its own destiny. It determines when it should be scheduled to run
and when it should be suspended. The TaskBase instance contains the stack and methods to access it. With a setup
like this, a dispatcher need only maintain a handle to the TaskBase instance, and manipulate the task through its pub-
lic interface.

FIGURE 2. Class Structure

The Task class adds message-passing to TaskBase. The message system will be described later in this document. For
this section, the important thing to remember is that the message is a basic unit in HiDEOS that carries information
from task to task. The Task class essentially turns the task into an event-driven model. It adds public methods for
other task instances to deliver messages to it and the ability for the task instance itself to send and receive messages.
In addition, it defines an entry point for user code to be run. When a message is delivered to a task instance, the
instance requests that it be scheduled. Some time later it starts running and calls a “Receive Message” function which
has been defined by the user. The user is free to run any code in the “Receive Message” function; normally a message
will imply a certain action to be carried out. Generally a single task is considered a device driver and is associated
with a particular instrument.

Nodes sending and receiving messages from each other require a method to locate each other. The name server com-
ponent fulfills this requirement. Each CPU in a complete HiDEOS system has one instance of the name server. Each
task instance must be given a unique character string name. The name server registers the name with a handle to the
task instance. The Task class can be used to automatically register the name of the instance. Any task running in the
system can ask the name server for a handle to another task given its name.

Many users of HiDEOS will be interacting with instruments in their tasks. Most instruments hang off of the system
bus, so the user must access the instrument by going through the bus controller, which can be thought of as a board-
level resource. Board-level resources in HiDEOS are controlled through classes. A resource is any board-level service
provided. Examples are the DRAM controller and the bus controller. When HiDEOS starts up, it creates one instance
of a specific control class for each of the board-level services available, assuming the service-specific control class
has been implemented. The DRAM controller is a good example of a class which operates a service on the mother-
board. A user can get a handle to the DRAM instance and ask it for information about the memory, such as “Get Total
Available DRAM.” The bus controller works in a similar fashion. For the VME bus, the VME bus controller class
instance can be asked to enable interrupt levels or open a memory mapping for the backplane.

Control System
Interface
Module

Protocol Serial
Driver

PLC

HiDEOS Message Processing Nodes

TaskBase

Task

UserTask

(Stack Control,Context,Sleep, Scheduling/Suspension)

(Send/Receive,Locate Tasks)

(Receive/Decode Messages, Operating Devices, Protocols)

A typical user application utilizes the message driven capabilities of HiDEOS to retrieve data from instruments on
demand. A set of HiDEOS tasks can send and receive a predefined set of messages to each other. The message man-
agement system consists of a basic message class from which all user messages are derived. It also contains a mes-
sage pool which manages user message buffers efficiently. HiDEOS tasks automatically know how to deal with a
basic message, therefore any derived message can also be used in the system. Each message type in a complete sys-
tem is required to be assigned a unique integer tag. The tag is used to generate and free message buffers, and also to
identify the true message type in a running program. This is necessary because the interface to the user program is a
function of the form “Receive Message” where message is the basic message. It is the job of the user code to check
the tag and cast the basic message into its true type. HiDEOS includes utilities to automatically maintain message
tags and the message pool. Tags are enumerated during the build process to match the class name with the word
“Type” appended at the end to guarantee uniqueness. The user can easily identify messages in the system by check-
ing the type code in the message against the tag enumerations. In Figure 3 below, two tags will be generated:
Msg_A=0 and Msg_B=1. When the user program starts running because a message has arrived, the type can be
checked against MSG_AType and Msg_BType so the true message can be recognized and the data extracted.

FIGURE 3. Messages

Message buffers must be freed and allocated using the special message pool. There is one instance of the message
pool class per CPU running HiDEOS. Message buffers are never released back into the heap. Once allocated from the
system heap, they remain in the system and are managed in free lists by the message pool. The message tags are
assigned in ascending order, so reusing message buffers from the message pool is just an index into an array of free
lists, one list per message type.

HiDEOS contains a dispatcher, shown in Figure 4. As an alternative, the system can easily be set up to use an exist-
ing dispatcher which is part of another operating system. An example of where the dispatcher is not used is vxWorks,
since it has its own. The dispatcher is extremely simple, it currently does round robin scheduling with only one prior-
ity. The dispatcher is implemented as a class. One instance of this class exists for each CPU running HiDEOS. A cir-
cular linked list of runnable tasks is maintained by the dispatcher. Each time a time slice is complete, the next task on
the linked list is restarted. The TaskBase class is used to add tasks to and remove tasks from the linked list.

FIGURE 4. Dispatcher

MESSAGE PROTOCOL AND DELIVERY SYSTEM

The Task class is an extremely important part of HiDEOS. With all the basic components of HiDEOS introduced, it is
now possible to explain the actions carried out by this class for delivering messages. The Task class implements an
input queue, and each message delivered to a task in HiDEOS is queued. A task delivers a message to another task by

Base Message Class
Msg

Msg_A

(Tag,Protocol Data)

Msg_B

Message Structure: Message Pool:

Msg_A=0
Free List
Msg_B=1
Free List

Msg_A Msg_A

Msg_B Msg_B

Direction

Current
Task

Task
Handle

Task
Handle

Task
Handle

Task
Handle

Task
Handle

Task
HandleNew Task

Insert Point

invoking a “Send” method. A task can wait for messages to appear in the input queue by using the “Wait For Any
Message” method.

As explained above, the interface from the Task class to the user’s code is through a redefined method in the user’s
derived class called “Receive Message.” The “Receive Message” method is always run in the task’s own process
space or context, independent of the other tasks running in the system. The user is free to return from this function
and should do so when the processing of the current message is complete. Returning from this function automatically
implies a “Wait For Any Message” method invocation. At any point in the “Receive Message” function, a call can be
made to “Wait For Any Message,” “Wait For Message Of This Type,” or “Wait For Message From A Specific Task.”
Invoking any of these can cause the task to suspend itself, removing itself from the dispatching chain until the speci-
fied event occurs.

A “Send Message” always executes in the caller’s process space or context. The send actually invokes a public inter-
face task of the intended receiver which will place the message in the receiver’s input queue. The act of doing so can
cause the receiving task to schedule itself depending on its state. If the receiving task is already running, then there is
no need to schedule. If it is waiting for any message to appear, then the task will schedule itself as part of the message
queuing procedure. If the receive task is waiting for a specific message not of the type being queued, then the task will
not be scheduled.

FIGURE 5. Process/Instance Space

Figure 5 illustrates Task instance bounds and the process or context in which functions get executed. The public inter-
face of a task contains a “QueueMessage” and “ReceiveMessage.” The QueueMessage is always executed in the
sender’s context or process space, the Receive is always executed in the receiver’s context.

Messages in HiDEOS use a simple datagram-like protocol. The encapsulation of data within headers is done through
subclassing. The Message base class contains the information needed to get messages from one task to another. The
class contains the following information: handle to sender’s task, handle to receive’s task, a special routing task han-
dle for remote communications, and a message type code (tag). The data length is not needed because the type code
automatically implies the length of the message. In fact, the message pool can be used to discover the length in bytes
of any of the messages given a message type code. As mentioned above, messages are always received in the base
class form and must be cast into the correct derived type. A message contains enough information in the header for a
user program to respond to the actual sender with results. Allowing two tasks on different CPUs to communicate
using the same mechanism is more complex. The third handle in the message, the routing handle, allows for a simple
way to transfer messages between two processors (CPUs) transparently. A router typically receives a message from a
remote task destined for a local task. The first thing it does is put the from information into the routing handle field,
and then place its own handle into the from field. The local task will receive the message from the remote task, do the
required processing, and respond to the sender. The real sender is actually the handle in the routing field, but the rout-
ing task has fooled the receiving task into sending the message to it. The routing task takes the routing handle and
places it back into the to field of the message and forwards it to the real destination.

Sending Task Receiving Task

Send QueueMessage Receive

Schedule
 Receiving
 Task

=Actual Running Process Boundary

=User Task Instance and Method Ownership Boundary

= Message Flow
Dispatcher

The message router in HiDEOS is implemented as a HiDEOS task that makes use of the routing field and other flags
in the Message base class. Figure 6 illustrates the manipulation of the Message fields by the routing tasks, which
catch messages coming in from remote systems and massage the to/from fields to make the message appear to have a
source on the local CPU. The routing task also takes on the special responsibility of forwarding name server queries
to other CPUs running HiDEOS. Each CPU running HiDEOS has one message router running.

FIGURE 6. Message Routing

To summarize, each instance of the task class in HiDEOS is a separate process or thread. The task class has a public
interface with two important functions in it: “Receive Message” and “Queue Message.” Other tasks in the system can
invoke “Queue Message.” Doing so can cause the task in which the “Queue Message” function was invoked to be
scheduled to run. The “Receive Message” function is actually user code that is called for each message in the task’s
input queue. The “Receive Message” function is always invoked within the task instance that owns the input queue in
which a message arrived. Messages always appear to be coming from a task on the same CPU, so a user can always
reply to the sender of a message.

CONTROL SYSTEM INTERFACE

In order to quickly and easily integrate HiDEOS-based devices into an existing control system, an interface class is
available for sending and receiving messages using general user-defined functions. The interface allows for non-HiD-
EOS programs to interact with HiDEOS programs and to be addressed with a handle just like HiDEOS tasks. It is
important to be able to hook HiDEOS into an existing control system, using the existing control system constructs.
The interface class allows this to be done. The interface class supplies methods for finding HiDEOS tasks by name
and sending messages to them. There is a “Receive Message” call that can be made. This call blocks until a message
has been delivered to the interface instance. The interface class provides a way for applications to be event driven.
Upon construction of an interface instance, a user event function can be registered that will be invoked each time a
messages appears which is destined for this instance. It is up to the user function to do something with the message;
usually it will be queued and a second process will be informed that there is work to do. The interface class does not
provide any queuing, so it is important that the user event function keep all messages that come in.

A HiDEOS process can receive a message from the interface class instance. The message appears as a message from
another HiDEOS task; there is really no distinction between a message from the interface classes and from other
tasks. An external process communicating with HiDEOS tasks using the interface class must still retrieve and free
message buffers using the HiDEOS message pool component.

One important attribute of using this interface is the ability to create one control system interface for a class of instru-
ments such as ADCs. The interface can specify a message format and protocol which it uses to get information from
ADCs. HiDEOS ADC drivers can be created that conform to that protocol. One piece of interface code is capable of
talking to many different ADCs, locating them by a character string name.

INITIAL IMPLEMENTATION

HiDEOS has been implemented as an embedded system using the C++ language and the above-outlined concepts.
The C++ language was chosen because it is straightforward to understand the generated machine code. It has a simple
memory allocation scheme similar to C, which can be used in a very efficient manner by letting HiDEOS manage
blocks of commonly used memory. C++ generally produces code in a similar fashion to C, allowing high perfor-
mance applications to be developed. Complete embedded executables can be produced which do not require any
additional run-time libraries. Also, the compiler is available free from GNU.

CPU-1 CPU-2

SourceTask DestinationTaskRouterTask-1 RouterTask-2
Transfer

Protocol

To=DestinationTask
From=SourceTask
Routing=NULL

To=DestinationTask
From=RouterTask-1
Routing=SourceTask

To=SourceTask
From=RouterTask-2
Routing=DestinationTask

Most components of HiDEOS were straightforward to implement using simple class hierarchies in C++. However,
using C++ with its tight typecasting and lack of true dynamic binding posed several problems with the message pass-
ing portion. The C++ class instance creator “new” does not allow the user to dynamically (as the program is running)
request a specific type of class instance to be constructed. In other words, the program cannot determine that a “Long-
Message” is required and ask the “new” operator to create one. The only argument to the “new” operator is a hard-
coded class. This is a problem in HiDEOS because messages require special buffer management so as to not fragment
the memory by constantly allocating and freeing messages from the heap. The message pool handler discussed
above is responsible for maintaining the message buffers. It is not possible in C++ to create a general “Get Message
Buffer Of This Type” function that takes an argument of a message tag. HiDEOS gets around this problem by gener-
ating a table of classes and a tag for each class (the type tag). In addition, a case statement is generated (in C++). The
case statement has one entry for each integer tag and code which knows how to create a class instance for the given
tag (perform the “new” operation).

One outcome of the C++ implementation is a single downloadable HiDEOS image. A completely self-contained
HiDEOS system is built for a particular application to run on a given CPU. This is good for embedded applications.
What this means is that the downloadable executable will start running as soon as the CPU boots and must have infor-
mation in it as to what services must be provided or what tasks must be running. The next section discusses the proce-
dure for doing this.

CONSTRUCTING PROCESSES OR TASKS

Developing an application under HiDEOS is a three-step process: decide on a message and message interface that can
be used to communicate with the instrument, develop a device driver for the instrument, and create or add instructions
to an existing start-up procedure describing how to generate and name the new task.

The main purpose of a HiDEOS message-processing node is to operate a device on demand. Deciding on a message
format is very important; it must convey as much pertinent information as possible in one transaction. Several general
purpose messages are predefined by the system. Using these messages, if they match, is usually good practice
because there are probably a set of other applications that want to communicate with the new task and know how to
send and receive the general-purpose messages. Defining new messages usually implies that clients wanting the new
services provided by the task must be modified to understand the new messages. An example of a general-purpose
message is a “StringMessage.” The message passes a generic string of bytes to the receiving task. This message is
useful for most serial link instruments. A second is the “LongMessage,” which transfers a simple long integer value
along with status information. Figure 7 shows an extremely simple example of a user message definition written using
C++ syntax. During the HiDEOS build process, the message will be discovered, an integer tag will be assigned, and
code will be generated for the message pool to create it, given the tag. An enumerated name “UserMessageType” will
also be generated which will be equivalent to the integer tag, and the enumeration will be placed into a global header

file of all message tags.

The second step in developing an application is to write the user code or driver. An stated earlier, all user programs
must be derived from the Task class, contain a constructor to initialize data or a device with which it will be commu-
nicating, and have defined a “Receive Message” function to be invoked automatically by the system to process mes-
sages. Figure 8 is a simple example of the definition of a HiDEOS task that will use the above-defined UserMessage.
The purpose of this example task is to read a register in the address space and return the value back to the

class UserMessage : public Message
{
public:

 long value;
}

FIGURE 7. UserMessage Definition

requester. The constructor for the UserTask just passes the name to the base
class Task, and zeros the total transaction counter:

UserTask::UserTask(char* name):Task(name) { total_trans=0; }

The “Receive Message” function decodes the message type, casts it to the real derived type, sets the value field from
a read of the hardware register, sends the message back to the source, and adds to the total transaction counter. As can
be seen, the code fragment only recognizes the message type “UserMsgType”; other messages are passed to the base
class Task for processing.

UserTask::Receive(Message* msg)
{

switch(msg->type)
{
case UserMsgType: // real type

UserMessage* m=(UserMsg*)msg;
m->value=(0xfffffc00); //read register
Send(msg->from,msg);
total_transactions++;
break;

default: Task::Receive(msg);
}

}

HiDEOS requires a set of instructions to set up processing nodes that are called upon during system initialization. The
instructions are contained in a function and are actually a set of user-written C++ statements that can be viewed as a
set of start-up rules. These start-up rules specify all the instruments and devices that will be controlled. When HiD-
EOS starts running, it calls the special user function to create a task instance for each service or device that will be
available. Each task instance sits idle after initializing, waiting for incoming messages requesting data transfers from
or to the device it owns. The start-up function has the responsibility of creating task instances for devices and giving
them names that will be registered in the system. An additional requirement is to hook or link tasks that will be work-
ing together, such as a high-level protocol and a serial link task. A typical start-up function contains a series of calls to
create and name task instances and a set of statements that connect tasks together is required. The current implemen-
tation requires a C++ system initialize hook function. In the future, a parsed rule file will be used to configure a HiD-
EOS system. This initialization function actually gets called before the dispatcher is started, so processing of
messages has not yet begun. Figure 9 shows an example of a function that starts up the task with a name. Other tasks

in the system can locate this task by using the name “my-task”.

CONCLUSION

This paper is designed to be an overview of the underlying concepts of HiDEOS and the methodology used to
develop HiDEOS applications. There are many capabilities and details in the real implementation not covered here.
For a more complete discussion, including a user’s guide, see [1]. Another paper describing the integration of HiD-

class UserTask:public Task
{
public:

UserTask(char* name);
void Receive(Message* msg);

private:
long total_trans;

}

FIGURE 8. UserTask Example

InitializationFunction()
{

UserTask* ut=new UserTask(“my_task”);
}

FIGURE 9. User Initialization Function

EOS into the EPICS control system at the Advanced Photon Source [2] includes a list of supported hardware and sev-
eral applications using the system, along with extensions required to operate a real HiDEOS system.

ACKNOWLEDGEMENTS

The HiDEOS analysis and design review assistance from John Winans of the Advanced Photon Source at Argonne
National Laboratory helped tremendously in producing a solid, coherent product. This work was supported in part by
the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

REFERENCES

[1] J.B. Kowalkowski; “Home Of HiDEOS,” World Wide Web URL: http://www.aps.anl.gov/asd/controls/hideos/
intro.html.

[2] J.B. Kowalkowski; “A Cost-Effective Way to Operate Instrumentation Using the Motorola MVME162 Industry
Pack Bus and HiDEOS,” these proceedings.

