
Gathering Data from the Fermilab Linac Using Object-Oriented Methodology
Elliott McCrory

Fermilab
Batavia, IL 60510  USA

Abstract.  For a number of years, a simple set of objects in C++ has been available to the 
Fermilab Linac Group for accessing data from the Linac control system.  This suite of classes is a 
simple and powerful way to access this system.  The objects are based on the way in which the accel-
erator data are stored in the local control stations and on the protocol through which these data are 
transmitted on the network.  This paper describes the objects and some of the ways in which they have 
been used.  In particular, several multi-purpose UNIX-style data acquisition tools have been written, 
along with an interface to pre-existing software packages.

1. Introduction
In order to fully describe this simple set of objects, it is necessary to understand a bit of the 

environment in which this system operates.  First, we will briefly describe the Fermilab 400 MeV 
Linac, followed by a short description of the control system which this accelerator uses.  Then, we get 
into the description of the objects used on the UNIX consoles for this system: abstraction and encap-
sulation of the data structures and methods.  A few of the applications are described, followed by some 
operational considerations of this system.

The genesis of this work came under Michael Allen[1].  He performed the basic abstraction 
and encapsulation of the objects described here.

2. The Fermilab Linac
The Fermilab Linac accelerates negative hydrogen ions (H−) from the ion source to 400 MeV 

through multiple stages of acceleration: ion source, 750 keV column, 116 MeV 201 MHz drift-tube 
linac and 400 MeV 805 MHz side-coupled-cavity linac[2].  There are a pair of (redundant) ion sourc-
es, five 201 MHz rf systems, eleven 805 MHz systems, a sub-system for the quadrupole magnets in 
the 805 MHz portion of the linac and a sub-system for the beam diagnostics. Vacuum is controlled, 
logically, through the rf sub-systems.  This linac cycles at 15 Hz and the ion beam can be accelerated 
on every rf cycle.  The beam pulse length varies from 10 to 60 microseconds.  Our average current 
today is 45 mA, for a total delivered charge of as high as 1.7×1013 particles per pulse.  With minor 
modification, this charge could be increased to 3×1013 ppp[3].

3. The Linac Control System
The control system for this linac is described in detail elsewhere[4].  The primary design goal 

of this system (in 1981) was to ensure that if a device went out of tolerance, then beam could be 
disallowed before the next 15 Hz cycle occurred.  In the days before the present control system, beam 
pipes and vacuum valves had been destroyed by the linac beam[5].  Directly from this primary speci-
fication falls the need to have the control system rigidly synchronous to the 15 Hz cycle time.  The 
alarm scan for each linac control station happens at 15 Hz, and about 5% of the analog readings in the 
linac have been enabled to inhibit beam when they go out of tolerance.

The software architecture[6] on each linac control station is loosely coupled to PSOS.  Com-
munication from a console computer is established through UDP/IP sockets, using either the Fermilab 
Accelerator Controls NETwork (ACNET) protocol[7] or through a custom "Classic Protocol."



The linac control system is distributed to seventeen VME-based crates containing MC68020 
processors (which could be upgraded to 68040’s), communicating with each other and with the outside 
world via Token Ring.  Each of the seventeen stations controls up to six Smart Rack Monitors (SRM) 
[8], which contain the D/A’s, A/D’s and digital I/O necessary to talk to real equipment.  The VME 
crate can also contain digitizers, but the only digitizers presently used on our VME stations are 1-to-10 
MHz "quick digitizers" [9] for looking at the transient beam diagnostic signals.  Each local control 
station owns approximately 400 scalar, analog devices.

We have recently developed an "Internet Rack Monitor" which is a stand-alone rack-mounted 
chassis which contains a MC68040/Ethernet/Industry Pack VME card, in addition to the D/A, A/D 
and digital I/O of an SRM [10].

This control system is used at other locations: the Fermilab D0 experiment, TESLA, Michigan 
State nuclear accelerator, Fermilab Booster and Main Ring High-Level rf, the Loma Linda Cancer 
Treatment Facility and the Shreveport PET-isotope production facility.

4. UNIX Data Acquisition and Control
The data acquisition and control software for the Linac consoles runs on Sun SPARCstation 

computers running Solaris 2.4.  It has, in the past, run on SunOS 4.1, SunOS 3 and on the 68020-based 
MassComp computers of 1988.  The system is implemented in C++.  The ideas presented here are 
evolving as the C++ definition evolves and as our experience with objects grows.  A FORTRAN 
interface is maintained, minimally.

5. Abstraction of Data and Operations
The objects in this OO system are abstractions of the data types which are present in the local 

control stations.  These data types are:
Scalar, analog data, the associated binary status and control alarms information and database 

information associated with a real or derived local device;
Binary data, it’s alarm and database information;
VME memory, including vectorized analog data associated with the quick digitizers;
Data streams (a generic way to assemble structures of data in the local station);
The means for gathering these data are encapsulated into the objects’s methods.  These meth-

ods include the network protocol for getting the data, database name resolution for analog devices, 
synchronized data return at a given rate (up to 15 Hz) and synchronized return of data when a specific 
Tevatron Clock (TCLK) event is received.

6. Description of the Objects
6.1 Major Objects
The major objects used in this system are described here. Refer to Figure 1 as a guide.
TRAccessObject : Parent object of all the data acquisition objects.  A closely-related class, 

CtlMsg , handles the information necessary to insure that each object gets the proper information 
from the network.

BinaryDatum : Handles the retrieval and processing of the local station’s binary data.
RemoteMemory : Handles the retrieval and processing of a local station’s VME memory.
DataStream : Handles the retrieval and processing of the local station’s data stream 

information.



Device : Handles the retrieval 
and processing of the local station’s sca-
lar analog devices.  This class includes: 
instances of the CtlData  class for han-
dling the scaling factors on the readings 
and settings of the device; an instance of 
the AngAlarm  class for determining the 
alarms status of the local device and a 
copy of the local database information 
(which can be modified and downloaded 
to the local station, if desired).  Options 
on this object include: Setting, motor 
control and associated binary status and 
control (through AssocBinary ).

Request : Handles the synchro-
nized, repetitive reception of data from 
the local control stations.  This repetitive 
return is initiated by a single network 
message.  This class includes: Lists of 

Device , RemoteMemory , BinaryDatum  or DataStream  through the list template 
PList< object >;  an instance of PList<ListType>  to define the type of data returned on the 
request; an integer representing the period of the return data (1=15 Hz; 30=0.5 Hz, for example); and, 
optionally, a TCLK event for returning data only on that event.  The control of when to return data is 
handled exclusively by the local station. 
 6.2 Minor Objects

The minor objects used in this system include:
ChanIdent  and AddrIdent : The logical address of the information within a local control 

station and on the network.
AngAlarm : Handles the analog alarm information for a Device.
AssocBinary : Handles the associated binary status and control for a Device.
CtlData : Handles the conversion of internal 16-bit data to voltages and to engineering units.

7. Some Applications
We have written a few dozen applications on these objects, and a few of these are summarized 

in Table 1.

 8. Operational Considerations
These classes were derived through the effort of M. Allen in 1988 for the Loma Linda Medical 

Accelerator, under development at that time at Fermilab.  The author has expanded and enhanced these 
object gradually over the years.  R. Florian has contributed a significant number of application pro-
grams over these years.  In summary, there has been only a minimal effort put into this fairly capable 
system, no more than 1 person-year.

We recently tested the robustness and throughput of the system on a SPARCstation 2 computer 
from Sun.  This computer was able to flawlessly capture and display over 500 network frames per 
second using this system.  

TRAccessObject

Device RemoteMemory

Request

BinaryDatum DataStream

Inheritance Makes Use Of

AngAlarm

AssocBinary

CtlData

CtlString

Ient

ListType

Figure 1, Simple view of the interrelationship of the 
objects.



This system is fully multi-user and multi-tasking.

9. Conclusions
Using an object-oriented approach to data acquisition in the Fermilab Linac has been a direct, 

simple and powerful way to encapsulate the complexity of data acquisition for this accelerator. New 
ideas will be implemented as the C++ definition changes and as we become more familiar with them.  
In particular, templates have not been adequately exploited, multiple inheritance is not used and no 
polymorphisms have been necessary.  This system is evolving.
 
10. References
[1] Present address: Motorola Corporation, Arlington Heights, IL, email: allen@cig.mot.com
[2] E. McCrory, "The Commissioning and Initial Operation of the Fermilab 400 MeV Linac," Proceedings of 

the 1994 Linac Conference (Tsukuba, Japan), pp 36-40.
[3] M. Popovic, et al., "Possible Upgrades to the 400 MeV Linac," Internal note.
[4] E. McCrory, R. Goodwin, M. Shea, "Upgrading the Fermilab Linac Control System," Proceedings of the 

1990 Linac Conference (Albuquerque), pp 474-476; http://adwww.fnal.gov/LINAC/linac.html

[5] Private communications with Charles Schmidt, Linac Group leader.
[6] http://adwww.fnal.gov/LINAC/software/locsys/locsys.html

[7] C. Briegel, et al., "The Fermilab ACNET Upgrade," NIM A293 (1990), 235-238.
[8] http://adwww.fnal.gov/LINAC/hardware/srm/srm.html

[9] http://adwww.fnal.gov/LINAC/hardware/quickdig/QuickDigitizerDoc.html

[10] http://adwww.fnal.gov/LINAC/hardware/irm/irm.html

Application Description

ac-get-data
General data acquisition on the UNIX Command Line

Correlation Plots, gating, triggering, and ~ 30 other options

DataViews Data acquisition interface to the commercial product DataViews

Synoptics Several synoptic displays implemented using DataViews

checklist

A suite of ~10 shell scripts which runs each day to inform staff of 
any unusual situation in the Linac control system
For example: check system date on each local control station, check
 that some of the important devices acutally are in the alarm scan, 
check for some rare fault conditions, etc.

Plot package Using TCL/TK/BLT, scalar and array plot packages

page-g
I/O with the 40x20 dumb-terminal used to access configuration 
parameters for each local station

IP Node Test Test that all IRMs are on the network

RDATA Edit
Edit the tables in the local control stations which control the 
operation of these systems.

Save Restore Data Edit the analog data description tables in the local control stations.

Table 1, List of some of the applications used in the Fermilab Linac


