The MECCA Source Code Capture Utility

Alex M. Waller
Fermilab
Accelerator Division Controls Department
MS 347
P.O. Box 500
Batavia, IL. 60510 USA

HISTORICAL BACKGROUND

In the early 1980s the Accelerator Division Control System underwent a major upgrade[1]. Until that time almost all
the software for the control system was written by the controls group staff. This was largely because the means by
which programs were entered into the control system were not readily accessible to most people outside the controls
department. Programs previously were entered through magnetic tape and punched cards. Much care needed to be
taken in entering an application in this fashion, as even editing of source was done with commands on punched cards
and source on magnetic tape. This mode of operation was to be eliminated as the controls development environment
became interactive. The move was from a system with a batch monitor operating system to one with a multitasking
operating system that allowed multiple users access through CRT terminals. It was anticipated that with such an
environment non-controls programmers would be writing applications for the newer Accelerator Division control
system.

Until that point in time in the early 1980s, there was little need to keep track of application source code for the
various programs that ran the accelerator. The source was all vaulted in rows of tape racks and trays of punched
cards. Now source would be edited interactively and exist dispersed on rotating magnetic disk storage. It became
desirable to archive al the vital code for the accelerator in some centralized fashion rather than having code reside
within the private accounts and disk allocations of the various users.

There was yet another strong argument to keep al the source code centrally located. Since the control system was
undergoing conversion and expansion both in hardware and software, it was necessary to be able recompile and
relink all applications under certain circumstances. This could only be successfully accomplished if the source code
was all centrally located.

As a result of the concern for source code management with the arrival of the newer control system, an in-house
code capture system called APL was written[2]. It was based on the observation that most applications were not
written by teams of programmers but rather by one or possibly two collaborating individuals. To this day thisis
largely true of all applications that run the accelerator. The utility simply copied all source code from a user's
directory to an APL directory. Compiling and linking were automated but the necessary commands still were needed
to be composed by the person writing the application.

The source code capture utility was very successful but had some limitations that became more annoying with time.
Initially it was written in the VAX VMS script language DCL[3]. Since the commands were interpreted, APL would
run rather slowly. Users could not write their own library procedures and hence a wealth of useful procedures could
not be shared by all. The source code capture utility only applied to console applications. All task building, linking
and overlaying instructions had to be defined by the user. For a large application this last point took quite a bit of
expertise.

In the late 1980s an APLII was created to address some of the growing problems. The actual code capture utility was
written in FORTRAN rather than DCL to speed up execution time. This was also the first try at integrating a
commercial product in helping manage the source code. The VMS product CM S (Code Management System) was
used[4]. Individual modules within the CM S database were compared and source code differences were logged in
the CM S database. This allowed the reconstruction of any previous version of code. Unfortunately the price paid for
this flexibility was execution speed. APLII never went far beyond beta testing because source code updating was too
dow for userg[5].

THE NEXT GENERATION

History and experience were the teachers for a new generation of source code capture systems. It was noted that
archiving all sources associated with an application was adeguate throughout the lifetime of the earlier source code
capture systems. Include files from various system resources needed to be alowed while still other include files
(other than those of the programmer) needed to be disallowed to contain applications within a scope of available,
reconstructable code. Also, cataloging the owner of an application and maintaining a description of it proved
invaluable to operations.

As more users programmed over a period of time, useful features became obvious. The next generation source code
capture system had to address the current one's limitations. User libraries needed to be allowed and captured. These
libraries had to be available for all other users also. Programming tasks other than just console applications should
also have their source code captured. The user had to be freed from having to specify the program compilation,
include file dependencies and module linking order. This process had to be fully automated so that the task building
process was very simple as far as the user was concerned.

What was also desired was more functionality and flexibility for the source code capture utility. The utility should
allow program development to go on within a user's default directory but without always archiving the modified
source. Also the source capture utility itself should be designed in such away asto be able to extend its functionality
without having to recompile, link and install a new image thus disrupting user work every time. Modification or
fixes "on the fly" to the source code capture utility was a desirable maintenance feature.

THE FEATURES OF MECCA

All the above mentioned desires were implemented into the new source code capture utility called MECCA
(Management Environment for Controls Console Applications)[6]. MECCA did not stop with archiving only
console applications, although this was its initial goal. User libraries and service applications also are captured. A
service application makes use of accelerator console libraries but typically does not do any console I/O. These
applications are typically servers or monitor applications.

MECCA incrementally builds applications by using the VMS commercial product MMS (Module Management
System)[7]. This approach rebuilds an application project much more quickly. An entire application can be rebuilt if
necessary by specifying a parameter to MECCA. Also one can retreat back to a previous version if required.

The application project directory can be listed by another MECCA parameter. Extra diagnostics can be turned on
and inserted into the resulting log file of the application build. These diagnostics have proved invaluable in tracking
down MECCA and user problems. Users can "announce" changes in their application through amail list that is built
from other users who "subscribe" to any number of such MECCA announcements for console applications and
service applications.

Users can build VMS help files for the console or service application as well as libraries. Any user can get help on
any application as needed. Author and history information are available on each application. If the maintainer of an
application should change, modifications can be made to the author information that is kept in MECCA.

HOW MECCA WORKS

Having dispensed with the historical background that led to the development of MECCA and expounding on the
features that were attained with it, a description of the workings of this program isin order. A conceptual diagram of
MECCA appearsin Figure 1. A more detailed and philosophical account appearsin the final section of this paper.

v Chatg s MEOCA dErectories
end process motfication .
o =7 ‘\.—E
Baich
(backgrowndh

-

L)
i —— |I Spanm
LY (frk)
S ot
b S——
MECTA
Execurahle
Figure 1

Coneceptual Flow of MECCA Control

Any source code modification process begins when a user "checks out" the MECCA source of an application or
library or service by performing a MECCA COPY command. All pertinent files for the application are copied into
the user's default directory. Since MECCA is running under a VMS environment, the command would appear as a
VMS command. Thus the syntax would be: MECCA/COPY nnnnnnnn; where nnnnnnnn is the program, library or
service name. All other MECCA commands take a similar format. Remember from the historical note that individual
applications within the Accelerator Division controls department are mostly developed by one or two people. A
more elaborate check-out mechanism beyond the simple source copy is not necessary.

The next step is to build the application (after the appropriate editing has been performed). The form of this
command is generally: MECCA nnnnnnnn; again where nnnnnnnn is the application, library, or service name. The
user generally needs not specify more VM S-like parameters unless (s)he wishes to do something special. For
example, one may wish to force arecompile of all the source with the/COMPILE_ALL parameter. One may wish to
have extra diagnostics placed within his’her log file with the /DIAGNOSTICS parameter.

A simple file date compare is performed on the current MECCA modules and the modules located within the user's
default directory. New and modified files have their include files scan to check for any include files that are not
allowed and to build up alist of dependencies for each new or modified module. The dependencies that are found
are used to automatically generate an MM S (make) file for the application.

While MECCA is moving files into the MECCA directories and the source is being compiled and the image linked,
a simple lock mechanism prevents others from trying to perform any MECCA operations on this application. A
simplelock is created with afile. This mechanism is sufficient to prevent conflicts during this critical section within
the MECCA operation on an application.

At this point MECCA copies all current working source from a user's default directory to an appropriate sub-
directory located within the MECCA root directory. If this is a development phase (specified with a
/DEVELOPMENT parameter) then no MECCA source will be copied to the appropriate directories within MECCA.
The build operation is then started as a batch (background) process so the user may go on to do other things while
the application, library, or service is being built. Within the batch process, it is determined if this is a console
application or service or a library. If thisis an application a linking process is involved. If thisis a library the
necessary library module is created. A log file, possibly with diagnostics, is produced by the batch process and is
placed in the user directory where theinitiall MECCA operation began.

If no errors have occurred, the old source code maintained within the MECCA directories is moved to a directory
with the text OLDn appended to it and the successful build is left in the current MECCA directory for the
application. The n in the OLD text is incremented for each revision number. If there is an error, the old source
maintained by MECCA is kept within the current MECCA directory for the application, and the version with errors
is kept in a directory named TEMP for the user to peruse. Figure 2 details the MECCA directory structure. At the
end of the MECCA batch process the user is informed of the state of the build operation.

= CURR
= TEMP
- pAC00—T VLDI
= SA0001 ok
. = OLDn
p= Pﬁl:nmu
SAnnnn CURR
MECCA root TEMP
= UL_nnnnnn OLD1
Service name :
- SER vIc:Es-[. OLDn

SErvice name

Figure 2

MECCA Directory Structure

THE MECCA PHILOSOPHY

User interface designed to be simple

Since the possibility of using character cell terminals existed, the MECCA interface was kept to be textual and
command driven. Also, on a careful analysis of what was required, MECCA was better suited to be command
driven. There is very little involved that would require a more sophisticated graphical user interface for selecting
input options, especialy if the default options were chosen wisely. As mentioned earlier, MECCA defaults are such
that what the user would "normally” want to do requires no extra MECCA parameters to be specified.

While the user is within the MECCA monitor process very little user feed-back (prompting) is required. For entering
anew library or application one needs to enter a line of text giving a description of the library or application. If one
is retreating to an older version MECCA needs a version number to retreat to. If previous source code for an
application was captured from a default directory different from the current default directory or modified by a user
other than the current user thisinformation is displayed and one is prompted to continue or abort. Finaly, if all goes
well, the user is asked if (s)he wishes to submit the application for the batch build operation.

Monitor process co-ordinates flow of control

Command input parameters are processed by a separate module of the MECCA monitor. This allows an easier port
to other platforms where a non-VMS style of command parameters would be more acceptable. As mentioned in the
previous section, the monitor will solicit any necessary user input. For new libraries and applications the monitor
creates the necessary directories from the MECCA root directory; for console applications the directory name is
derived from a sequentially assigned number; for libraries the directory name is prefixed with the string "UL_"; for
service applications the service nameis used directly.

The monitor process is responsible for spawning (forking) processes. Some of the processes that get spawned are:
Help, which executes the VMS DCL HELP command; Directory, which executes the VMS DCL DIRECTORY
command; Copy, which executes the COPY command; and HISTORY, which executes a VMS TPU[8] section
which evokes an editor to browse the history file of a given application. When a process is spawned control returns
to the MECCA monitor process. A spawned process is generally one where a single VMS command line can be
executed, a brief VMS DCL script can be executed, or a brief piece of auxiliary code such as C or TPU can be
executed.

The monitor processis also responsible for submitting batch jobs (background tasks). The background jobs that get
submitted are: Build, which is the primary functionality of MECCA; Help, which builds the necessary VMS help
from the extracted comments within a source program; Retreat, which retreats to a previous version of an application
in MECCA. A Batch process is ailmost always the end result of a MECCA operation. Batch processes are tasks that
are lengthy, complicated, or time consuming.

Auxiliary operations are kept separate from monitor process

Since many MECCA tasks are relegated to spawned or batch jobs, MECCA is highly modular. Only new
functionality requires adding information to the monitor process so that the monitor can co-ordinate the execution of
a new task. MECCA behavior can be altered or extended without compiling, linking, or installing an executable
image with every instance of required change. This modular approach allows a tight granularity on maintenance.
Generally only asmall section of code or script has to be modified or debugged and fixed since all functionality that
needs to be changed (or fixed) is entirely self-contained within a single module or script. Also, new functionality
that is added can be developed and tested independently from the current running version of MECCA.

The many MECCA modules are written in a variety of ways. What is used largely depends on the situation. The
MMS (make) generator is written in a powerful string processing language called TPU on our VMS system. This
was most appropriate since much string processing is needed. The included scanner is written in C. Many of the
other procedures are DCL scripts which take advantage of the command facilities of the VAX VMS operating
system.

CONCLUSIONS

MECCA has adhered to the simplicity of earlier source code capture systems but yet was able to achieve the
flexibility necessary for the growing needs of the programming community of console applications and services. It
has proved fast and efficient for the given environment of the Accelerator Division control system. The decision to
keep MECCA code itself modular has greatly aided in debugging and developing MECCA rapidly thus keeping
maintenance controlled and to a minimum.

ACKNOWLEDGMENT

| would like to thank Jim Smedinghoff for his valuable suggestions on the general design direction MECCA should
follow. Jim also provided the TPU procedure that generates the make (MMS) file for any given application, library
or service.

REFERENCES

(1]
(2]
(3]
[4]
(9]
6]
[7]

8]

D.Bogert, The Fermilab Accelerator Control System, Nuclear Instruments and M ethods in Physics Research,
Volume A247 (1986), pp. 8-24.

A. Thomas, D.Baddorf, K. Cahill, D. Rohde, J. Smedinghoff, L. Winterowd, User's Guide to ACNET Console
Systems, Fermilab Internal Report, Software Documentation Memo 62.3 (1985), Chapter 6.

OpenVMS DCL Dictionary, Digital Equipment Corporation, 1995.

DECset, DEC Code Management System Reference Manual, Digital Equipment Corporation, 1995.

Private communications with Robert Joshel and Brian Hendricks.

A. Waller, MECCA; the Management Environment for Controls Console Applications, Fermilab Internal
Report, Software Documentation Memo 208 (1994).

DEC3GL Implementation Toolkit for VMS, MM S Description Generator User's Guide, Digital Equipment
Corporation, 1992.

DECTPU, DEC Text Processing Utility Reference Manual, Digital Equipment Corporation, 1993.

