
Writing Easily Portable Code

by M.D.Geib Vista Control Systems, Inc.

Introduction
This paper discusses some of the issues related to producing portable software.

When a software system is ported from one platform to another the following logical steps are normally
taken: the source files for the system are moved or made accessible on the new target system; any platform
dependent modules are modified to support the new target platform; any required data files are moved to the
new target system; and finally the complete system is built and tested on the target. Portable software
makes this process as easy and reliable as possible.

Some of the important issues that can affect portability include the differences between the compilers being
used on the different platforms, how to interface to required OS facilities, byte ordering, floating-point
format, availability of standard APIs and facilities, and possibly the transfer of data between supported
platforms.

This paper discusses these issues as they relate to source code and data portability. The paper is the result of
experience gained during a project at Vista Control Systems, Inc. to re-engineer Vaccess. Vaccess is a real-
time database with an API that transparently supports network access to remotely hosted databases.

Compilers
Compilers and languages in general are important issues with regard to developing portable systems. It is
advantageous to choose a language that is available and mature on all the target platforms and in addition
one that is covered by an adopted standard definition. There are a number of languages with adopted
standards, such as FORTRAN and Pascal. However, languages such as FORTRAN are plagued by the
availability of numerous extensions that make each implementation a non-portable super-set of the
language. The FORTRAN-90 language holds the promise of being suitable as a portable language.
However, FORTRAN-90 does not yet enjoy widespread support. Languages that do not provide a
‘complete’ set of facilities and runtime functions require extensions which are usually not consistent
between vendors.

The popularity of C reflects it’s rich set of facilities, useful data types, operators, control structures, and
runtime library functions. In addition to the characteristics of the language, C has another advantage over
other languages, not specific to portability: There are a very large number of C programmers.

C is not free from many of the problems discussed above. Depending on the compilers involved, there can
be a wide range in how consistent the different features of the language are implemented. Many older
implementations include constructs and features not supported by, and incompatible with, the newer
implementations. ISO compliant C compilers minimize the differences between implementations to a point
where they are all but gone. This paper assumes the use of ISO C as the language used to develop portable
systems.

What is not defined by ISO

Even if the compiler is ISO compliant, problems can still arise. The ISO standard leaves certain details up
to the compiler implementers and these details can affect portability. For example, the ISO standard does
not specify the default data type of a variable defined as char. Whether the variable is signed or unsigned is
left up to the implementer.

In a similar way, some common C programming practices are specified as undefined in the ISO standard.
For example, conversion between a function pointer type and a data pointer type is undefined, and the ISO

standard does not guarantee that a function pointer can be safely converted to or from a type (void *). Code
which includes such conversions most likely will not be portable.

Extensions provided by a compiler are also problem areas when it comes to portability. Be aware that some
popular compilers may provide extensions to the ISO standard that may not be supported on all the target
platforms. If a compiler supports a switch to disable ISO extensions or nonstandard constructs, the compiler
can be used to help to find these problems early on in development, or when planning to port an existing
system.

The size and range of data types is not completely specified by the ISO C standard. The standard simply
states that an int can not be smaller than a short and that a long may not be smaller than an int. Similarly a
double can not be smaller than a float and a long double may not be smaller than a double. The ISO
standard does specify the minimum range for each type. For example, the legal values of an int fall in the
range of -32,767 to 32,767. This requirement means that an ISO conforming compiler can not represent an
int in only 8 bits. A compiler implementer is free to increase the range of a data type. If a data item must
be of a known size, then by using a user-defined data type or new symbol that type can be supported on
platforms that may have different sizes and ranges for the built-in C types.

User defined data types

Some platforms and compilers support data types not supported on other platforms and some are not fully
specified in the ISO standard. Both of these problems can be handled with user defined data types, or simply
new symbols defined for each type a system will need. Along with the user defined data types, it is
important to keep in mind how these data types will be used and manipulated. If a data type may not be
supported on a target, the chances are good that the normal C operators and runtime functions will not
support the data type. In these cases a new function or macro should be defined and used to manipulate the
data type. Configure the compiler to do as much argument checking as possible. This helps to reduce the
possible incompatible use of user defined data types.

Platform independence
It is best when developing portable systems to isolate all the platform dependent code in separate modules.
These modules can then be recoded on each target platform. This method is preferred over that using
conditional compiles for a given section of code. Using separate compilation modules for isolating platform
dependent code explicitly identifies future porting work. When maintaining the code, it is much less error
prone to work on the platform dependent modules when a change is necessary, rather than working on a
section of code in a platform independent module that could have side effects on other platforms the code
runs on. Isolating platform dependent code also helps keeps the platform independent code much more
portable when a new target is selected, since only the platform dependent modules need to be worked on.
Platform dependent code includes any code that assumes the representation of data types, makes use of OS
provided services, etc.

OS facilities

Any facility not part of the ISO standard for the C language must be isolated in platform dependent
modules. Even though the newly adopted POSIX standard has tried to address some of the areas not included
in the language specification, its support is not widespread enough to make it dependable. However, the use
of POSIX can make the platform dependent modules much easier to port, so its use can still be beneficial.
If more than one of the target platforms supports POSIX, porting the platform dependent modules could be
trivial. They could be equivalent, thus reducing the work required to support a given platform.

Bi-endian support

When developing a portable system, it is impossible to ignore the issue of byte ordering. Intel and Digital
both support little endian byte ordering while Motorola, SUN, and HP support big endian byte ordering.
Some new processors can run in either or mixed modes. Any code that assumes the byte ordering of data is
dependent on the platform and should be isolated in platform dependent modules.

Byte ordering is an issue when a multi-byte data item is not treated as a single, indivisible entity. For
example, any code that accesses the individual bytes within a multi-byte integer, or manipulates the bits
within an integer, is certainly byte order dependent. The use of C unions can also lead to byte order
dependencies. Unions are used in a nonportable fashion any time a union component is referenced when the
last assignment to the union was not through the same component.

Any use of C bit fields is likely nonportable. The ISO standard allows compiler implementers to impose
constraints on the maximum size of a bit field and to specify certain addressing boundaries that bit fields
cannot cross. Typically bit fields are used in platform dependent code to force a data structure to match a
fixed hardware representation.

In general, any code that makes assumptions about the representation of the supported C data types is not
platform independent and should be isolated.

File Specification Syntax

The syntax for specifying file names varies from platform to platform. All code that explicitly manipulates
file specifications must be isolated in platform dependent modules.

Command Line Interface

Although the command line interface an application presents to the user can in most cases be made
portable, the platform the application is running can be an issue. Users on a UNIX system expect a certain
look and feel to the command lines presented to them, while OpenVMS users expect an entirely different
presentation. Again, the code to interface with and parse the command line can be isolated in platform
dependent modules. Another approach is to develop a library of routines for interfacing to the command
line. This library could support all the different platform styles. This approach has the advantage that, for
users who move between disparate looking platforms, the application can accept any style of command line.
The user can enter command lines in a style that they are most comfortable with.

Standards

Standard facilities or interfaces can be used for minimizing the work required when porting the platform
dependent modules of a system. However, since the support of these standards is not consistent or wide
spread, they cannot be used in platform independent modules unless the availability of the standard on the
target platforms is researched and validated. If a standard becomes mature enough and supported on all target
platforms, it is very easy to convert a platform dependent module into a platform independent one.

Tools for improving portability
The portability of source code can be improved by using some common automated checking tools.
Although tools cannot guarantee that source will be portable, they can help reduce the number of problems
that require a programmer’s attention.

UNIX Lint

As described in the "man page" entry for lint, lint is a program checker that attempts to detect features of C
programs that are likely to be bugs, non-portable, or wasteful. Lint can be very useful in finding problems
related to the inconsistent use of data. It flags such potential problems as assigning a long value to a non-
long value, comparisons with unsigned values, questionable use of pointers, and statements with an
unknown order of evaluation. In general the type checking of lint is much stricter than compilers. Lint can
also be used to find name clashes when external names are truncated to six characters and non-external
names are truncated to eight characters. The ISO standard only guarantees external names are unique within
the first six characters.

Multiple compiler use during development

Since portable source will almost always be compiled with different compilers, it is a big advantage to
compile new source with as many different compilers as possible during development. Multiple compilers
can quickly weed out the subtle differences between compiler implementations. Using two or more
compilers during development produces source that is very likely to compile on additional platforms in the
future.

Code generating tools

Another class of tool that can be applied to the production of portable systems are tools that generate code.
If the code generated by a tool is verified to be portable, such a tool could be a great asset in producing a
portable system. Such tools may include code generators for graphical interfaces, graphical tools for
generating software controller algorithms, etc.

Portable data
For systems that make use of data files, another aspect of portability is the support for these data files. For
simple files, like an X resource file, it is appropriate to use text files that are fairly portable.

Many systems read and write binary files that must be portable. For example, a utility on one platform may
be used to generate a file that other related utilities read, and these other utilities may be running on various
platforms. In this case, the utilities must be able to read the file independent of what platform produced it.

File headers

One method for making data files portable is by prefixing them with a standard file header which includes
information indicating how the file was written. The header information should include enough information
to discover the byte ordering of data in the file, the format of the floating point data, the character collating
sequence, and possibly the format of any time data included in the file. Once this file header is developed,
any utility can be developed to support reading and writing of portable binary. This method has the
advantage that for files written and read on similar systems, no type conversion is required, resulting in
better performance.

Using portable data types

Another approach to producing portable data files is to adopt a standard data format for all required data
types. Since a single format is used for all data applications simply convert to that type for writing and
convert from that type for reading. For systems that have native data types that match the standard format
chosen, no conversion is every required. This prevents any performance gain when the platform where the
data is written is similar to the platform where the data is read, if both have native types that are different
from the chosen standard file format.

Data communication
As was the case for portable data files, many systems must pass data between different machines while they
are running. This requires that all the machines must be able to read and write data that other machines write
and read. Like the data file, to handle this problem for data communication a number of approaches are
available.

RPC

A number of Remote Procedure Call packages are available that handle many of the problems associated
with passing data between different machines. These packages handle the conversion of data between the
host machine and the client machine.

Typically, a tool is provided to define all the arguments passed in the RPCs. A utility then reads the data
definitions and produces code to handle the conversion of the data to and from the network representation.

Raw/Low level data

Using RPC may not always be appropriate, or available. When lower level data communication is required
between machines, code must be written to support the conversion of data to and from different platform
types.

One approach is to prefix the data with information similar to the binary file header so that the receiver of
the data can convert the data to the native types if required. As with the file header approach, this technique
has the advantage that for two similar platforms, no conversion is necessary.

Another approach is to convert the data to a standard type for transmission to the other machine. All parties
involved must then convert to and from the standard type in order to communicate with the other machines.
This is the approach normally taken by the RPC packages. In fact, many of the platforms that support
RPC packages provide access to the routines used by the RPC for data conversion so that users can use the
same routines for converting data to and from a standard network representation for their own use.

Portability of standard (popular) libraries
Many systems make use of libraries of routines that have become defacto standards or at least very popular.
Even though these libraries are available on many platforms, there is no guarantee that the implementation
on each platform is consistent. And in some cases the use of such a library provides so many advantages
over writing equivalent routines that a system should make use of it even if it is not available on all the
target platforms. In this case, isolating the use of the library in a platform dependent module allows the
library to be used on platforms where it is available, and provides a good location in which to implement
the equivalent functionality on platforms that do not.

Mixed language support
If a software system provides an API, support for mixed languages may be required even if the system is
implemented in C. Normally, API support for mixed languages is provided by supplying different language
bindings that support the standard argument passing methods for each language. A portable system may
have to isolate the binding for a specific language in a platform dependent module since the inter-language
calling conventions may not be uniform on different computing platforms.

One Experience
Vista has experienced great success in producing portable systems. Many of the techniques discussed in this
paper have been applied in the re-engineering of our core product, Vaccess. With the initial release of the re-
engineered version of Vaccess expected early next year a number of successful ports have already been
completed. The initial development of the new version was done on Digital UNIX and VxWorks. The first
port of the product was to OpenVMS and was accomplished in less than eight man hours. Subsequent ports
to UNIXware, Solaris x86, and Solaris SPARC have been completed in four man hours each.

As a comparison, early in 1990 the then current version of Vaccess was ported from OpenVMS to
VAXELN. This port benefited from many advantages in that the two platforms supported many similar OS
facilities, and they both ran on the VAX processor. There was no need for supporting different data types,
byte ordering, etc. With all of these advantages this port took more than four man months of effort to
complete initially. This is about 100 times the effort required to port the new product to platforms with
much different characteristics. In addition, maintenance of Vaccess became more and more difficult because
of the required support for both OpenVMS and VAXELN.

CONCLUSIONS
The development of portable systems can be made straightforward by taking the time to become aware of
the issues involved in portability. Although implementing a portable system may incur an additional
overhead initially, the benefits justify this expense.

Experiences at Vista have demonstrated the direct benefit of producing portable systems with the completion
of numerous ports with minimal effort. Additional benefits will be realized with the reduction in
maintenance effort for the system during its lifetime.

