
DISTRIBUTED SOFTWARE DEVELOPMENT IN THE EPICS
COLLABORATION *

Leo R. Dalesio, Los Alamos National Laboratory (LANL)
Martin Kraimer, Argonne National Laboratory (ANL)

William Watson, Continuous Electron Beam Accelerator Facility (CEBAF)
Matthias Clausen, Deutches Elektronen–Synchrontron (DESY)

ABSTRACT

The Experimental Physics and Industrial Control System (EPICS) collaboration now consists of many accelerator,
astronomy and particle detector projects. Many of these groups contribute code to the collaboration. The interest of
the sponsoring laboratory is always the primary driver in decisions about developing new code. As a side affect of
meeting the needs of a given project, the collaboration receives new developments. This paper will study the overall
composition of EPICS with regards to distributed development, the sociological and technical environment in which
these developments are made, the problems in distributed software development, and the benefits of developing
software at multiple sites.

* Work supported under the U.S. Department of Energy, Office of Basic Energy Sciences under Contract Nos.
(W–7405–ENG–36), (W–31–109–ENG–38) and (DE–AC02–89ER40486)

INTRODUCTION
The Experimental Physics and Industrial Control System (EPICS)[1] is currently in use on over 30 projects

in Europe, Asia, and North America. It is used in particle accelerators, particle detectors, astronomy, commercial
industry and industrial research. Every site in the collaboration has had to make some additions for their local projects.
Many of these modifications have been reintegrated into subsequent releases of EPICS. Most of the sites in the
collaboration upgrade to the latest releases to take advantage of the new packages and features. This environment
poses some challenges and opportunity in code development, integration, and installation.

SOFTWARE DEVELOPMENT
There are three basic methods for developing code in this environment: independent development, successive

development, and joint development. Independent development occurs when code is added on to existing interfaces
that were specifically designed to support extendibility. Successive development is characterized by the modification
of existing code. Joint development will be distinguished by the involvement of others in the various stages of
development: requirements, functional specifications, design, and implementation. It is true that there is a great deal
of overlap between these three methods, but they will be considered separately. In each section we will define the
method through examples. Then we will look at the benefit and potential problems unique to each method.

SOFTWARE DEVELOPMENT: INDEPENDENT
When EPICS was first designed, one of the key goals was extendability. In the initial release the clearest

interface for extensions was in the communications layer. This architecture is shown in figure l. The client/server
model was chosen and a well defined client interface was developed[2]. Immediately, there were several clients
developed for operator viewing, data archiving, and the support of sequential control. There were also some special
purpose applications developed for beam physics: neural network, phase scanning and emittance measurements. As
more collaborators joined, more client codes were developed. There are clients for interfaces to commercial data
visualization packages such as: SL–GMS, Dataviews, and Labview. There are also connections to analysis packages
such as: Matlab, Mathematica, IDL, and PV–Wave. Interfaces were also developed for tcl/TK, WINGZ, and other
in–house physics applications. Commercial packages and developed packages continue to be integrated using this
interface. This well defined interface allowed developers to work without interaction and coordination of the authors.

In the original release, new database functions or hardware support required modifications to existing code.
 To extend the database functions and I/O support coordination with the author was required. In release 3.0, the
database and hardware support were provided with a clean interface for extensions. The database functions and
hardware support joined the client software in the amount of activity that it experienced. The only area where there
was no interface, was in the server – the EPICS database was the only data store available to the applications. In
response, a portable channel access server application programmer interface (API)[3] and a Control DEVice (CDEV)
API[4] are both under development. With the completion of these two APIs, complete inter–operability of EPICS
clients and EPICS servers with any other clients or servers will be possible. With these two APIs, the EPICS suite will
be completely extendable at every level.

Independent development produces the fastest result and gives the collaborators control over the outcome
of their program. When these developments are done without consulting others, they tend to be of limited use and are
frequently less than optimal. These developments produce a more complete result when some time is spent to work
with others on the functional specification and design. Frequently, different sites are solving the same problem without
joining forces. The ability to do independent development to extend and replace portions of the system is essential
for successfully supporting research systems and results in a great deal of new functionality in this collaboration.

SOFTWARE DEVELOPMENT: SUCCESSIVE
Successive development is accomplished in several ways: iterative development by the author, hand the code

to another author or cannibalize a code for a specific function. See figure 2. As this is an evolutionary approach, the
results are typically beneficial. The main concern in this area is that the new code is upwardly compatible.

All general purpose applications in EPICS have gone through upgrades based on user feedback. These
modifications include added features, changed behavior, improved robustness, and increased ease of use. These

EPICS 2.0 (’89)

DM, Archiver, Seq.

CA Client

CA Server

Database Funcs.

Drivers

I/O

EPICS 3.0 (’90)

CA Client

CA Server

Database Funcs.

Device Layer

I/O

Driver Layer

~10 DB Functions
~3 I/O Buses
~10 devices/modules

physics apps, labview, tcl/
tk, mathmatica, ALH,
EZCA,IDL, Probe, BURT,
SL–GMS, Dataviews, Mat-
Lab, MEDM, Archiver, Se-
quencer, etc.

~38 DB Functions
~10 I/O buses
>50 devices/modules

CA Client

CA Server

DB Funcs.

Dev. Layer

I/O

Drv. Layer

CDEV

Other
data
stores

Other data
stores

physics apps, labview, tcl/
tk, mathmatica, ALH,
EZCA,IDL, Probe, BURT,
SL–GMS, Dataviews, Mat-
Lab, MEDM, Archiver, Se-
quencer, etc.

EPICS 3.12 (’95)

Figure 1. Program Interfaces for Extensions

modifications are made at the discretion of the author. This limitation can be overcome by passing the development
of a package between authors and projects. This is particularly useful when the original work is not quite complete
and the author is not able to continue. The EPICS database was the earliest example of this. The CAMAC driver was
also developed through the successive efforts of developers at CEBAF, Duke FEL, and LAMPF. Successive
development can also be used to take advantage of a previous code for a specific problem. As mentioned earlier, the
original channel access server was tightly integrated to the EPICS database. DESY had a need for a data server to an
existing system. They started with the CA server, ported it to VMS and connected it to the existing cryogenic control
system. This server was subsequently acquired by the LAMPF controls group at Los Alamos and used to provide a
gateway between EPICS and the LAMPF Control System (LCS)[5]. Finally, the need to integrate these existing
systems came a full circle and provided one of the driving forces for developing a portable channel access server.
Successive software development provides existing codes with new features, uses distributed resources for completion
of codes, or provides developers with a starting point for their task.

All packages that have ever been introduced into the release have had improvements. Most of these
improvements are the result of feedback from the collaboration. In every case, there is a need for upward compatibility.
Within the inherent constraints of a software package, evolution is the safest road to perfection.

JOINT SOFTWARE DEVELOPMENT

Joint development is done between groups. Many of the successive and add–on developments are made after
joint discussion of functional or performance improvements. Since the collaboration has started, most newly written
applications have been made in this fashion. Existing applications use this method to determine which modifications
will be made and how they will be incorporated. For most packages, requirements and functional specifications are

Database Funcs.

Drivers

Database Funcs.

Device Layer

Driver Layer

Channel Access, Display Manager, Sequencer, BURT, MEDM, etc......

Package Feedback Package

(LANL–GTA)

Discussion
(LANL/ANL)

ANL–APS

CA Server

EPICS DB
vxWorks

(LANL–GTA)

Xfer
 SW

CA Server

EMC–D/3
 VMS

(DESY–HERA)

CA Server

 LCS
 VMS

(LANL–LAMPF)

Xfer
Ideas

CA Server

Any Data

Xfer
 SW

(LANL–EPICS)

Figure 2. Successive Developments

made in a large group. See figure 3. The design is then made by a small group of people that have some experience
with similar problems. The implementation is then made by a single institution. The alarm handler was the earliest
joint project. The most recent have been CDEV and the portable channel access server. In some instances, the
development can be distributed as well. The archiver upgrade that is currently in progress has some well defined pieces
that are intended to be developed by different institutions. CEBAF, Los Alamos and Argonne have expressed interest
in contributing designers and programmers to this effort. As all of these programs are in operation, it is difficult to get
enough funding to provide this general solution. Hopefully everyone will benefit. Distributed effort can also be used
to investigate new technology. A proposal was recently accepted for analyzing the usefulness of Distributed
Computing Environment (DCE) for the EPICS community. It will be evaluated for use as a distributed name server,
a communication protocol and a distributed file manager. The evaluation will be made by people at Los Alamos,
Argonne, Lawrence Berkeley and CEBAF. In some cases, this method has produced some very complete (perhaps
grandiose) plans. In these instances, great ideas were generated and nothing useful was delivered.

All of the general and widely used tools in EPICS are developed and modified using this method. In many
cases this approach is very time consuming. Communication is more difficult. We manage using an e–mail exploder,
video conferences, and bi–annual collaboration meetings[6]. For technology evaluation and new developments, it
helps to combine the limited resources at several sites to produce a more complete and timely result. In every case,
a more complete understanding results from the consideration of all ideas. Successful joint development requires a
balance between completeness and resources: schedule and personnel.

REINTEGRATION TEST, DISTRIBUTION AND SUPPORT

There is a great deal of effort involved in the reintegration, test, distribution and support for new releases.
This task is made more challenging by the absence of direct funding for EPICS. The effort required to support these

Requirements Functional
Specification Design Implement

Jointly Jointly Jointly Locally

Requirements Functional
Specification Design Implement

Part A
Jointly Jointly Jointly Implement

Part B
Implement
Part C
Distributed

Requirements Functional
Specification Design No Result

Jointly Jointly Jointly

Figure 3. Joint Development of Software

tasks is too large for any operational project to fund and we no longer have any large development project team funded
to handle these functions. To provide these functions we continually look for ways to reduce the cost and distribute
the effort.

The reintegration of modifications is necessary to make the developments throughout the collaboration
available to everyone. This effort is currently provided by the Advanced Photon Source (APS) at Argonne National
Laboratory (ANL). We have reduced the scope of this effort by creating clean interfaces for extending EPICS. In the
areas where this is not yet provided, code merging is frequently required. We have reduced this effort somewhat by
taking advantage of source/release control tools. Under Source Code Control System (SCCS) we were required to
perform source compares to merge changes from different sources. With Concurrent Version System (CVS) there is
a merge function that interacts with the integrator. In the future, we may use DCE to assure that the master source is
only checked out at one site at a time.

After the code is reintegrated, verification is required. Once again, it is the controls group at APS that provides
the function. The largest reduction in effort was obtained by dividing EPICS into base and extensions. The base portion
is handled at APS and the extensions are handled by the authors. The base consists of: channel access client/server,
selected database device and driver support and the sequencer. Extensions include all of the channel access clients:
alarm handler, display managers, interfaces to commercial products, archiver, etc... Another cost reduction step was
to reduce the frequency of releases. Finally, there are a number of test suites that have been developed that automate
some of the testing and provide a recipe to follow for the others. Verification done correctly before a release is much
more cost effective than having every site find and fix errors that are introduced by upgrades.

 The distribution of new releases has been distributed to different sites by platform. Lawrence Berkeley
Laboratory (LBL) supports SunOS and WindowNT, Stanford Synchrotron Radiation Laboratory (SSRL) supports
DEC OSF1, the Royal Greenwich Observatory (RGO) supports Solaris, the University of Chicago (UC) supports DEC
VMS , SGI is supported by UC, Dupont–Northwestern–Dow beamline at APS supports Linux, and CEBAF supports
the HPUX release. Only VMS, Linux, and WNT have the channel access client library supported. By distributing the
build and distribution responsibility, we have provided the collaboration with expertise for a large number of operating
systems while causing minimum cost to any one site.

Support for EPICS packages is also distributed. The build is supported in the same fashion as the distribution.
Problems, suggestions, and extensions are frequently discussed and handled over the mail exploder. Ultimately, the
author is responsible for handling these issues.

We consider reintegration, test, distribution and support crucial to the success of the members of the
collaboration. To maximize the benefit of our limited resources, we identified the items that were critical and provided
central support. Distributing responsibility for platforms to experts and the maintenance of code to the authors provides
better, but perhaps not more timely, support. The lack of direct support for EPICS has been overcome by the
willingness of APS to support the central effort, new configuration control technology and the willingness of other
collaboration members to pitch in.

UPGRADING TO A NEW RELEASE

The value of a new release must exceed the cost of the upgrade. From the beginning, all configuration tools
have had an ASCII format that could be reported from one release and then read into the new data structures of the
new release. The major version number in EPICS has referred to the ability to communicate between nodes. Version
3.0 (1991) through version 3.12 (current) have supported communication between all versions of the clients and
servers. Any combination of clients and servers works. This allows projects to upgrade on a node by node basis without
re–compilation, as long as the major release number is the same. With the recent development of complete application
environments and clean interfaces for extensions, local variations of an EPICS release are now supported seamlessly
through an upgrade. This combination of features allows projects to make use of new releases with a minimum impact
on their project.

CONCLUSION

The EPICS collaboration has been successful as exhibited by its existence since 1990 and the continued
growth in the number of programs and the areas of use. Clean interfaces have supported independent and collaborative
development. The continued development and added resources of the collaboration have given us the ability to
integrate new technology and new methodology as additions or alternatives to our existing functionality. Backward
compatibility, reintegration, and test enable these new developments to be used at all sites in the collaboration. The
combined experience of the engineers and physicists in a collaborative environment provides a more complete
solution to the problems we are solving.

ACKNOWLEDGEMENT

The EPICS collaboration is made up of individuals. It is the ability of these individuals to come together and
share problems, ideas, criticism, and solutions that makes this work. It is a real privilege to be able to work with each
other in a very concrete way and share the lessons of our combined experience. The access to these individuals is the
greatest benefit of all.

REFERENCES

[1] Dalesio, L.R., et. al. “The Experiemental Physics and Industrial Control System architecture: past, present, and
future, ” in Proceedings of International Conference on Accelerator and Large Experimental Physics Control
Systems, W. Busse and M.C. Crowley–Milling, Eds. (ICALEPCS, Berlin, Germany, 1993), pp. 179–184.

[2] Hill, J.O., “Channel Access: A SOftware Bus for the LAACS,” in Proceedings of International Conference on
Accelerator and Large Experimental Physics Control Systems, D. Gurd and M.C. Crowley–Milling, Eds.
(ICALEPCS, Vancouver, British Columbia, Canada, 1989), pp. 352–355.

[3] Hill, J.O., “A Server Level API for EPICS,” submitted to this conference.

[4] Chen, J., Akers, W., Heyes, G., Wu, D., Watson, W..”An Object–Oriented Class Library for Developing Device
Control Applications,” submitted to this conference.

[5] Schaller, S.C., Oothoudt, M.A., “Generalized Control and Data Access at the LANSCE Accelerator Complex ––
Gateways and Migrators,” submitted to this conference.

[6] Knott, M., “Communication in Support of Software Sharing and Collaborative Development,” submitted to this
conference.

