
Doing Accelerator Physics Using SDDS, UNIX, and EPICS1

M. Borland, L. Emery, N. Sereno
Argonne National Laboratory; 9700 S. Cass Avenue; Argonne, Il 60439

Abstract
The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system

and EPICS (Experimental Physics and Industrial Controls System), has proved remarkably powerful during
the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol
has permitted a tool-oriented approach to developing applications, wherein generic programs are written
that function as part of multiple applications. While EPICS-specific tools were written for data collection,
automated experiment execution, closed-loop control, and so forth, data processing and display are done
with the SDDS Toolkit. Experiments and data reduction are implemented as UNIX shell scripts that co-
ordinate the execution of EPICS-specific tools and SDDS tools. Because of the power and generic nature
of the individual tools and of the UNIX shell enviroment, automated experiments can be prepared and ex-
ecuted rapidly in response to unanticipated needs or new ideas. Examples are given of application of this
methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron
characterization.

1 The SDDS Protocol and Toolkit

The Self-Describing Data Set file protocol and program toolkit are an essential part of accelerator experi-
ments at APS. The usefulness of SDDS stems less from the data protocol itself than from the large number
of existing generic SDDS-compliant programs, referred to collectively as the “SDDS Toolkit.” The file
protocol and the toolkit are described in detail in the references [1, 2].

Self-describing data (SDD) are data that are referred to and accessed by name only. SDD usually have
metadata that are available, again by name only. We believe the limited application of SDD to date is
related to attempts to achieve excessive generality. With increasing generality comes increasing difficulty
in application development and use, and longer development times. An overly general protocol makes it
difficult to create generic tools, losing the principle motivation for SDD.

SDDS protocol is general enough to be useful, but simple enough to be usable. The data model permits
an arbitrary number of “data pages” of homogeneous structure. The structure defines an arbitrary collection
of parameters (i.e., single values), multidimensional arrays, and a data table. Each page is an instance of
this structure. The various elements of the page are available via calls to a library of C routines, as is
metadata about the elements (e.g., units, data type, number of array entries). Various data types (e.g., string,
floating-point, integer) are supported.

SDDS files may be either binary or ASCII format. The ASCII variant is simple enough that input data
can be readily created “by hand” when required. Data from non-compliant programs can often be converted
with the addition of a simple file header.

While the SDDS protocol is able to store most data conveniently, using it would not be advantageous if
there were no tools available to operate on the data. The SDDS Toolkit is a group of over 40 independent
programs that accept SDDS files as input. Almost all of the programs also create SDDS files as output.
This means that complicated data processing sequences can be created by combining the function of several
programs, without worrying about whether one program can use the output of another or create output
suitable for another. Such sequences may use intermediate files or they may be constructed as pipelines.
Applications are made more independent of each other, in that the presence of additional data in a data
stream will not break an application. Further, applications can verify the validity of the data they are given,
e.g., by checking for the presence of data, checking units, or checking the data type.

1Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.



Using SDDS, individuals may add programs for use in their own sequences without restriction. Indi-
viduals may create shell scripts of data processing sequences and combine these scripts without restriction.
Centralized control of such activity is neither required nor desirable, in contrast to the now common all-in-
one approach to data processing applications.

2 SDDS-Compliant EPICS Tools

The Experimental Physics and Industrial Control System[3] (EPICS) is used at APS and at a number of
other accelerator facilities. At APS, with very few exceptions, SDDS is used for collection and processing
of all commissioning data, both from EPICS and from other sources.

For example, SDDS is used for the following controls applications: saving, restoring, and compar-
ing machine configurations; configuring composite knobs; storing magnet conditioning instructions; saving
and restoring GPIB device configurations; storing data from digital oscilloscopes and spectrum analyzers;
archival data logging; collection of data during automated experiments; and configuration data for general-
ized feedback on process variables (e.g., orbit correction).

Using the same philosophy as for the SDDS Toolkit, we have developed generic programs that interact
with EPICS while using SDDS files for input and output. That is, while the tools take data from EPICS,
they are configured by SDDS files and produce SDDS files as output. Hence, we have not needed to write
any EPICS-specific data processing or display programs, but have simply used the SDDS Toolkit.

For a summary of many of the currently-available SDDS Toolkit programs and SDDS-Compliant EPICS
tools, the reader may consult reference [2]. Some of the following sections assume the reader is familiar
with this reference.

3 Using SDDS, EPICS, and UNIX for Experiments

All of the SDDS programs can, of course, be executed from the commandline. They can also be executed
via a button-push in, for example, a Tcl/Tk [4] GUI application. More importantly, script languages such as
csh and tclsh provide a ready-made environment within which experimenters can combine the power of
many programs. This provides the capability of making complicated data collection and processing scripts
on demand. Any particular script may make use of other scripts as component commands. Scripts may
invoke any of the multitude of powerful UNIX commands (e.g., grep, tr), and they may make use of built-in
features of the script language, such as flow control and mathematical expression evaluation.

For APS commissioning, SDDS-compliant EPICS tools provide generic data gathering and control
functions. Instrument-specific SDDS-compliant tools provide for control and integration of data from “off
line” sources such as portable oscilloscopes or spectrum analyzers. Data analysis involving all of these
sources is performed using the SDDS toolkit. Frequently, these capabilities are incorporated into scripts
written on-the-fly by experimenters on shift. For a basic introduction to working with SDDS within the
EPICS and UNIX framework, see reference [5].

The following is a list of some of the accelerator physics experiments and observations that have been
done to date using only UNIX scripts and the SDDS tools: response matrices for closed orbits and tra-
jectories; dispersion and chromaticity measurement by variation of rf frequency; integer tune measurement
from difference orbits; beam motion characterization (see below); transverse tunes vs beam current; lifetime
and vacuum system response to variations in bunch pattern and beam current; rf voltage calibration using
the synchrotron tune; longitudinal acceptance measurements; beam-excited higher-order- mode searches of
rf cavities; injection kicker pulse shape measurement using beam and a fluorescent screen; pulsed power
supply amplitude stability and jitter; beam lifetime vs current, scraper position and bump height; beam-
position-monitor (BPM) offset measurements (see below); automated determination of bad BPMs; klystron



gain characterization (see below); linac efficiency optimization scans; linac bunch length measurement us-
ing back-phasing; linac energy gain calibration vs input power, temperature and frequency; linac emittance
measurements.

There is a trend in control systems toward using graphical user interfaces (GUIs), which is clearly
desirable for routine operations. However, for experimental work, GUIs can be a serious impediment when
used exclusively. There are several reasons for this, which motivated our approach.

Firstly, such work is by definition open-ended, while GUIs almost by definition confine the user to
preconceived choices. Secondly, experimental work is often procedural, whereas GUI applications are
user-driven; a GUI that permits designing and executing general procedural experiments is essentially a
script composition tool, the power of which is dependent entirely on the capability of the script language
and the power of individual commands. Thirdly, GUI applications usually cannot be coordinated, as the
user is required to provide directions to each GUI using the mouse. Ideally, one shouldn’t need to run a
particular GUI interface in order to use a particular algorithm (e.g., orbit correction). The algorithm should
be available conveniently through a script language, and not simply through a subroutine call in a compiled
program.

In the following sections, we provide several detailed case studies that illustrate our approach. These
are arranged in order of increasing complexity. The reader should note how data is taken through multiple
stages of processing, with each stage frequently reusing the programs invoked in earlier stages for different
specific tasks. Note also how the different applications use many of the same basic tools. Everything that is
discussed in the examples is done entirely using UNIX scripts and SDDS tools; there are no manual steps
in any of the data processing.

4 Example: Beam Motion Characterization

Since the APS has a tight tolerance for the electron beam oscillatory motion, it is important to characterize
the beam motion and then locate any sources of such motion. These are typically magnet power supply
ripple and magnet girder excitation. Rather than manually screening every power supply and girder with
portable instruments, one can obtain information from beam observations and experimentation. At APS,
we gather raw beam position monitor (BPM) data, then process the data down to its essentials with UNIX
shell scripts of SDDS commands, all in a few minutes. In this section we will describe how scripts and
SDDS tools were used in the course of identifying and locating a 6.5-Hz beam motion in the storage ring.

We use the raw BPM data obtained by the “slow” BPM history modules. These modules collect up
to 4080 readings at a 60-Hz rate, each reading being the average of 2048 turns. Forty synchronized BPM
histories, one from each of 40 storage ring sectors, can be acquired in this way. A script prepares the BPM
history modules and the local input/output controllers (IOCs) for the acquisition, sends a trigger signal to
all IOCs simultaneously, waits for the 4080-point history buffers to fill, and downloads the history buffer
waveforms to an SDDS file using sddswmonitor. The script makes heavy use of some channel access
commandline tools, such as cavput, which assigns values to lists of process variables, and cawait, which
waits for process variable values to fulfill specified conditions before executing specified actions. Since these
channel access tools don’t deal with files, they are not SDDS tools, but they have become indispensable in
automating data acquisition. Acquiring 40 BPM histories and downloading them to a file takes about 100
seconds. To do all 360 BPMs, the script repeats the acquisition nine times, once for each BPM in a sector,
producing nine files, and taking about sixteen minutes.

The data from the slow beam histories is processed in several ways, among which are the following:

• Calculation of the standard deviation, (σx), of each BPM history: Each raw data file contains a
data column corresponding to a BPM history. After using sddssmooth to determine and remove
the slowly-varying components, one can use sddsprocess to create for each BPM data column a



new parameter whose value is equal to the standard deviation of the corresponding column. The
sequence of the commands sddscollapse, sddstranspose, and sddsconvert, with appropriate
options, transforms the file containing parameters into a new file of one string and one double data
column named BPM and StdDev, for instance, which can be plotted with sddsplot.

It is useful to plot the quantity σx/
p

βx, where βx is the horizontal beta function obtained from an
optics modeling program output file. With the use of sddsxref, the data column βx is transferred
from the optics program output file to the file with the columns BPM and StdDev mentioned in the
previous paragraph; sddsxref is able to match the BPM names from the measurement and the optics
program in order to get the correct value of βx for each BPM. Once this is done, the new column for
σx/
p

βx is computed using sddsprocess. Plotting this result revealed a function that was constant
around the ring, a sure indication of many sources of beam motion.

• Calculation of the beam motion spectrum for each BPM: The BPM raw data file is Fourier analyzed
with the sddsfft command. The output file contains one FFT data column per BPM. Each spectral
peak corresponds to a source frequency. A spectrograph plot of the power spectral density (PSD) as
a function of BPM is produced using sddscontour to reveal a pattern in the peaks; such a plot is
shown in Figure 1. One can see the ubiquitous 6.5-Hz motion, plus a hint of 12-Hz motion due to
a girder resonance. Continuing the analysis, the PSD within various frequency bands is summed for
each BPM’s FFT using sddsprocess, and then plotted as a function of BPM name using sddsplot.
When the power in the band from 5.5-7.5 Hz is normalized to 1/

p
βx as per the previous paragraph,

the data shows the 6.5-Hz line is also caused by many sources.

As the 6.5-Hz frequency of the dominant horizontal motion did not correspond to any known girder
resonance, we investigated power supply sources. Power supply readbacks were acquired and analyzed
using sddsstatmon at a hardware-limited 1-Hz rate. The output file contained one standard deviation data
column for each supply monitored. A list of worst offenders was drawn up by sorting the rows of the file
with sddssort according to the value of the standard deviation. Some of the worst supplies were analyzed
locally with a spectrum analyzer, revealing 6.5-Hz lines in some sextupoles.

Before making any modifications to these supplies, we performed a series of before-and-after experi-
ments using the BPM histories. In each case we were able to determine within a few minutes whether the
beam motion changed due to, say, turning off a family of sextupoles. Figures 2 and 3 show plots of the
reduced data from one of the experiments, revealing that the sextupole magnet convertors were the sources
of the 6.5-Hz beam motion.

5 Example: Linear Accelerator Klystron Gain Measurement and Analysis

The purpose of this application is to measure the gain of the APS linear accelerator (linac) klystron high
power amplifiers and determine from the data an empirical formula relating the klystron parameters. The
klystron amplifier transforms a low-power rf signal at its input to a high-power rf signal at its output. In
addition, the output power level depends on the tube voltage applied between the klystron cathode and anode.
The application consists of using sddsexperiment to measure the klystron output power as a function of
input power for various tube voltages. Subsequent data analysis is carried out using the SDDS Toolkit.

Data analysis consists of fitting an appropriate function to the measured output power data for a given
tube voltage. The chosen fitting function,

Pout = a1 + a2e−a3Pin , (1)

reproduces the variation of output power with input power at a given tube voltage. For each tube voltage V,
the fit will be slightly different and the fit coefficients in equation 1 can be considered functions of the tube



Figure 1: PSDs of orbit motion at one BPM per sector with 6.5-Hz motion present.

voltage V. Each coefficient is then fit according to a simple linear function with a slope and intercept. In
this way, equation 1 yields an empirical formula for the klystron output power as a function of input power
and tube voltage.

Data acquisition was done using sddsexperiment. The program used EPICS process variables for
drive and input power as well as tube voltage defined for each klystron. The experiment was done using
two loops, where the tube voltage setpoint was varied in the outer loop and the input power was varied
by an inner loop. A complication arises in this measurement because the input power is actually indirectly
adjusted via a programmable attenuator. A C-shell script was written to manually adjust the attenuator
until a given target drive power was reached. sddsexperiment invokes the script in the inner loop as a
subprocess to vary the drive power.

Figure 4 shows the data taken for the “sector L4” klystron as well as the best fit to the data using
equation 1. The voltage shown in the legend is actually the pulse forming network voltage (PFN) that
controls the tube voltage. The PFN voltage is stepped up by a scale factor of seven to the full tube voltage
by a transformer.

Data analysis is performed according to the following procedure using various Toolkit programs in a
C-shell script: 1. Sort the data according to increasing PFN voltage Vp using sddssort. 2. Break the data
into pages using sddsbreak according to changes in Vp. 3. Compute the average Vp for each gain curve
in Figure 4 using sddsprocess. 4. Perform the exponential fit given by equation 1 using sddsexpfit.
5. Remove data points which lie beyond two standard deviations (“outliers”) from the best fit line using
sddsoutlier. Eliminated data is apparent from gaps in Figure 4. 6. Perform an exponential fit on the data
remaining after outlier elimination. 7. Use sddsxref and sddscollapse to collect the fit coefficients and
PFN voltages into two data columns in an SDDS file. 8. Perform a linear fit to the coefficient vs Vp data
using sddspfit.



Figure 2: rms orbit motion as a function of BPM around the ring for two lattice configurations.

Figure 5 shows the coefficient a3 as a function of Vp along with a linear fit. The slope and intercept of
the fit are displayed on the figure using sddsplot’s ability to display string parameters from files as part
of plot labels. The other two coefficients show a similar linear dependence. The slope and intercept for
each coefficient curve along with equation 1 yields the desired empirical relationship between the klystron
output power, input power, and tube (PFN) voltage.

6 Example: BPM Offset Measurements

In order to obtain optimum performance from a third-generation light source like the APS, it is important
to accurately center the beam in the magnetic elements. Many APS beam position monitors (BPMs) are
located close to quadrupoles; hence we calibrate the centers of such BPMs relative to the centers of adjacent
quadrupoles. Initially the beam is steered to center it in the BPMs as well as possible. If it passes off-center
through a quadrupole magnet due to a position offset in a BPM, a small quadrupole strength change will
produce an orbit shift at every BPM, the shift being linear in the change and in the offset. By finding the
beam position for which no shift occurs, one determines the quadrupole-center-to-BPM-center offset.

We found that taking a single measurement of the orbit change for a single quadrupole change was very
noise-sensitive. Instead, we varied a beam bump centered on the quadrupole of interest, which varies the
effect of quadrupole strength changes. Taking data for several bump positions permitted inferring the offset
from a set of linear fits.

The measurement script takes as an argument the name of the quadrupole for which the offset is desired.
While the entire experiment could be done within a single sddsexperiment run, it is convenient to break it
into two nested runs, since this allows testing and use of the inner loop in stand-alone fashion. In the outer
loop, the beam position in a quadrupole is varied by ∼ ±2.5mm in five steps. In the inner loop, the quadrupole



Figure 3: FFT of orbit motion at one BPM for two lattice configurations.

strength is varied by ∼ ±2% in 11 steps. The outer loop is implemented as a script that prepares input for
sddsexperiment and executes it. This sddsexperiment repeatedly executes another script, which itself
prepares input for a second sddsexperiment run and executes it, thus implementing the inner loop. It is in
the inner loop that BPM data are collected. For each of the 55 points on the two-dimensional experimental
grid, 20 readings are averaged for each of 80 BPMs spaced around the ring, meaning that 88,000 readings
go into each offset result.

The data processing script uses sddsslopes to find, for each bump height, the slope of the orbit change
at each BPM with respect to the change in quadrupole strength; we call these the “quad slopes.” After using
sddscombine, sddscollapse, and sddstranpose to collate and reorganize the data, the script then applies
sddsslopes again to fit lines to the quad slopes as a function of measured bump height. sddsprocess is
then used to compute 80 estimates of the offset (one for each of the BPMs used) and an error estimate for
each. The script performs outlier elimination on the offsets using sddsoutlier, then uses sddsprocess
to compute the error-weighted mean offset (from the accepted data) and an estimate of its error.

The script also produces several graphics, allowing the experimenter to evaluate the quality of the data.
Figure 6 shows one of these, a histogram of the offsets derived from each BPM, along with a title giving the
mean offset; the title text is composed by sddsprocess in the same invocation that computes the results,
then extracted from the file by sddsplot for display with the data. Figure 7 shows another, a display of the
individual quad slopes along with the corresponding offset errors; this illustrates that, as expected, BPMs
with quad slopes that are larger in magnitude have smaller errors. Using the ability of sddsprocess to
evaluate complicated user-defined equations involving data in a file, it was possible to compute the error-
weighted mean offset, which makes use of even the less certain data to provide an improved result.

Once many offsets are measured, they are collated into a single data file using sddscombine and
sddscollapse. This permits analyzing the final measured offsets as a group, or sending them to the



Figure 4: Measurements and fits for klystron output power vs input power for various PFN voltages.

controls system for subtraction from BPM readings.

7 Acknowledgements

The authors wish to acknowledge the following individuals for contributions to the SDDS toolkit and EPICS-
specific tools, either in the form of suggestions, bug discoveries, or contributed programs: J. Carwardine
(APS), Y. Chung (APS), K. Evans (APS), N. Karonis (FNAL), E. Lessner (APS), S. Milton (APS), G.
Rinehart (IPNS), C. Saunders (APS), M. White (APS).

References

[1] M. Borland, “A Self-Describing File Protocol for Simulation Integration and Shared Postprocessors,”
Proceedings of the 1995 Particle Accelerator Conference, May 1-5, 1995, Dallas, Texas, to be pub-
lished.

[2] M. Borland, L. Emery, “The Self-Describing Data Sets File Protocol and Toolkit,” these proceedings.

[3] L. R. Dalesio, M. R. Kramer, A. J. Kozubal, “EPICS Architecture,” in ICALEPCS 1991, pp. 278–281.

[4] J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

[5] J. A. Carwardine, “An Introduction to Plant Monitoring Through the EPICS Control System,” these
proceedings.



Figure 5: Exponential decay constant of fit as a function of PFN voltage.

Figure 6: Histogram of particular BPM-to-quadrupole offset as estimated from numerous BPMs.



Figure 7: Estimates of BPM-to-quadrupole offset and “quad slopes” from numerous BPMs.


