Client-Server Design and Implementation Issues in the Accelerator Control
System Environment *

S. Sathe, L. Hoff, T. Clifford
Brookhaven National Laboratory
Upton, NY, 11973-5000, USA

Abstract

In distributed system communication software design, the Client-Server model has been widely used. This paper

addresses the design and implementation issues of such a model, particularly when used in Accelerator Control Sys-
tems. In designing the Client-Server model one needs to decide how the services will be defined for a server, what
types of messages the server will respond to, which data formats will be used for the network transactions and how
the server will be located by the client. Special consideration needs to be given to error handling both on the server
and client side. Since the server is usually located on a machine other than the client, easy and informative server
diagnostic capability is required. The higher level abstraction provided by the Client-Server model simplifies the
application writing, but fine control over the network parameters is essential to provide the performance required.
These design issues and implementation trade-offs are discussed in this paper.

1. Introduction

Very large scale integration and the advent of data communication networks have made desktop computers an afford-
able alternative to centralized facilities. Data-communication networks connect the computers together, allowing the
exchange of information and the sharing of resources between different computers on the network. Resources can
now be concentrated in the computer that best provides the resource and that computer can make the resource avail-
able to other computers via the network. An application is no longer confined to the resources available on the local
computer, but can now use the resources available to the network.

An accelerator control application is an example of such a paradigm. It uses various services such as the database,
accelerator device control, alarm handling, data archiving, data display and user interface services. To perform these
services one or more of each type of server is available. These servers are distributed across the network and need to
be accessible to the application. An application user should be able to access these services on the network without
explicitly requesting the network transactions. The computer software should automatically locate the resource and
transfer the information to and from the service. In other words, access to the services on the network needs to be
transparent. A standard model for such distributed applications is a Client-Server model.

2. Client-Server Model

In a Client-Server model, the server offers the services to the network which the client can access. The term client and
server do not necessarily imply computers; they can be thought of as a client process and a server process. In certain
cases even a server process may perform a client’s role in addition to its server role and vice versa. A Client Server
relationship is not symmetrical[1]. This means that they are coded differently. The server is started first and never ter-
minates unless it is forced to.

* Work performed under the auspices of the U.S.Department of Energy



A server typically opens a communication channel and waits for a client request to arrive at the well known address.
Upon the arrival of a request, the server executes it in the context of the server process or in a separate one and sends
back the results to the client. Then it goes back in the wait state to receive more client requests. The client, knowing

the server address, opens a communication channel, connects to it, and then sends request messages to the server and
receives the responses. When done, the client closes the communication channel.

A Client-Server model is considered to be part of the session layer and presentation layer of the well-known Open
System Interconnect(OSI)[2] Model. This layer hides the application layer from some networking details and differ-
ences in data formats between various computer architectures. These higher level abstractions namely Client and
Server provide an appropriate interface which makes the distributed application writing simpler.

3. Server Design

A server typically provides a number of services. A service is a piece of code that accomplishes the desired function-
ality. A Service can be fully defined by its name, input parameters and the results produced. Such a service can be
executed in the context of the server process and is called an iterative service, or it can be executed in the context of
another process and is called a concurrent service. The iterative services are used when the time to handle a request is
known ahead of time. In the case of a concurrent service, the amount of time required to handle the service is
unknown or is too long to hold the server process from accepting new requests. Concurrent services need to be reen-
trant and, if they have to share any global data, a proper locking mechanism is required. Accelerator controls device
services such as setting the setpoint of a device or getting the readback from a device are examples of the concurrent
type services, as the time required for these services varies with which control device is being used. However, the ser-
vice that gets server diagnostic information can be of an iterative type of service.

A server can betateles®r stateful A stateless server does not maintain any information or state about the clients.
However a stateful server accumulates client information to function properly. In the case of a stateless server crash,
the client comes to know about it and can retry to contact it. The server can just be restarted and then functions nor-
mally. However if a stateful server crashes in the middle of its operation, the server alone has the information to know
where to resume operation. Server crash recovery can be complicated. A stateful server also needs to know about a
client crash so that it can clean up the client information held with it. An accelerator controls device server that sends
back a number of replies for a single client request needs to remember the client address and therefore is an example
of a stateful server. However a display server is a stateless server since it does not have to remember any client infor-
mation.

Another issue in server design is security. Should the server need to identify the client before accepting the request? If
the server does employ some identification checking scheme, it should report security faults to some authority. Accel-
erator control facilities that give control system access to a large user community tend to have some kind of security
scheme built in their system.

The issue of heterogeneity is important in the server design. Several kinds of heterogeneity need to be considered:
machine architecture independence, operating system independence, software vendor implementation independence
and server release independence. Different machine architectures have different data representations. Using higher
level languages can solve this problem. The use of standards and portable compilers give the operating system inde-
pendence. The server release independence implies that the client should be able to run independently of which ver-
sion of the service is available. Vendor dependencies must be eliminated to increase the portability of the application.

Accelerator controls applications can be written using C or C++ languages to achieve the machine architecture inde-
pendence. The use of a portable compiler such as GNU (provided by Open Software Foundation) C or C++ compiler
gives operating system independence. The use of standard libraries such as POSIX gives vendor independence. In
accelerator control applications it is common that a server and/or a client needs to be updated after it has been
released. This need may be because of added functionality or a bug fix in the server code. It is often desirable that the
old and new versions of server should coexist such that the new server can service the requests from the old or the
new clients. The clients should be prepared to use the new server if it exists or should try the old one.



Error reporting is one of the important features of the server. A server needs to return the good or bad status of the ser-
vice executed. A well defined interface to define all the service-related errors is crucial.

4. Client Design

A client is an entity that requests services from a remote or a local server. The client assembles a request message and
transmits it to the server to initiate some action by the server. The first step in a client design is to determine how the
client will find the server process to which it wants to send the requests. Some kind of a database is usually employed
to hold this information.

The request messages sent by a client to a server can be broadly categorized as send-only, blocked, callback, batch
and broadcast[1]. A send-only type message originates at the client end and is sent to the server. There is no reply
expected from the server for this message. A client request sent to the display server to update the data to be displayed
is an example of a send-only type message. When a blocked message is sent to the server, the client blocks until the
reply is received from the server. A request to get the control device server diagnostic information is an example of
such a type of message. When a callback message is sent to the server, one or several replies are expected from the
server at a later time. To receive such delayed replies, the client now has to become a server and the server has to
become a client while originating the replies. For example, an accelerator control device client sends a callback
request to a server to receive the data from a device based on a hardware or a software event. A broadcast message is
sent to probe the network for servers matching a certain address. The servers matching this address acknowledge the
request by sending a reply back to the client. A batch message keeps the requests at the client side until the client lets
them go over the network. An advantage of sending requests in batches is that it reduces the network overhead. A sin-
gle reply for all the requests is sent by the server. Accelerator control clients use batching of request messages to
improve overall performance.

There are some issues to consider while determining the timeout values for the client. Servers are likely to take vary-
ing amounts of time to service individual requests, depending on factors such as server load, network routing and net-
work congestion. The client should be prepared for the worst conditions or for a variation of service time-outs.

A client can fail to communicate to a server for various reasons. For example, the client may not find the address of
the server, or the network between the server and client may not be operational, or the machine on which the server
runs may not be up, or the server itself may not be running. The client needs to detect and report these errors in a
well-defined fashion.

A client and server running on two computers having different architectures pose a data interpretation problem. To
overcome such a problem various strategies can be used. The client can filter the data into a machine-independent for-
mat before sending it to the server. The server on receiving the request filters it in its native format. When sending the
reply back to the client, the server filters the data in the machine independent format and the client filters it back into
the native format.

A second strategy could be that the server always makes the data right after receiving and before sending. This strat-
egy assumes that the server knows about its native architecture data formats as well as the client’s architecture data
format. Another strategy is that the client always makes the data conversions before sending and after receiving. In
this case the client has to know about its native as well as servers’s architecture data format. It is also possible to have
the receiver always making the data right. In such a case both client and server have to know the architecture of the
machine from which the data came. Accelerator control applications can choose from one of the above mentioned
techniques that is suitable for their environment. However the technique that converts the data to machine indepen-
dent format or the case where the receiver always makes the data right are supported by standard industry tools such
as RPC[1][3].



5. Client Server Performance

As with any software design, performance is an issue in the design of the server. Numerous client requests can
quickly affect a servers’s performance, if the server has to do a lot of processing for each request. By keeping the
request short and the amount of work required by the server for each request low, the performance can be improved,
especially in the case of the iterative server. If the service takes a long time to finish, the server performance can be
improved by making it concurrent. If the concurrent service uses a globally shared resource, care should be taken to
lock it at the lowest possible level of granularity to avoid delays and assure smooth working of the server.

A client should try to group small requests into one batch and then send it to the server in one network transaction to
avoid the overhead involved in sending individual small requests.

One of the parameters that has a big impact on the server performance is flow control. Flow control assures that the
client does not overwhelm the server by sending requests at a faster rate than the server can process them. The size of
the request message and the rate at which the message is sent need to be tuned for the given network configuration.

Proper network parameter selection is important both on the client and the server side. In the accelerator control
applications, the message size typically varies from application to application. It ranges from a few bytes to a few
hundred kilobytes. The time required to send and receive the message is mainly dependent on the size of the message
for the same distance. It is desirable to be able to set the timeout suitable for a given request. The network receive
buffer size for the server is a function of the largest message size, as well as how many clients are expected to com-
municate to the server simultaneously. The network send buffer size needs to be set as well, depending upon the size
of the message and the rate at which they are sent. To help the user to get a handle on the network transaction timing,
the client needs to provide the timing statistics for the messages being sent and the reply messages being received.

Last but not least, the network components play an important role in improving the client server performance. High
performance network elements such as bridges and routers and high band-width networks, specially for consoles that
collect data from a number of front ends, are crucial.

A server health checking mechanism is necessary to be built in the server design. Some diagnostics about the server
request handling are highly desirable.

6. Client Server Implementation

One of the major decisions that the implementor needs to make in the beginning is what network transport is appro-
priate for a given Client Server model. User Datagram Protocol (UDP) and Transmission Controls Protocol (TCP/IP)
are widely used transports in accelerator control system. The size of the messages to be exchanged, network topology
and reliability of the message delivery are important determining factors amongst many others. UDP seems to be suit-
able for smaller size messages, typically less than 1000 bytes and for the smaller network. The smaller message size
and smaller network ensure a minimal packet loss with normal network traffic. TCP/IP is desirable in case of large
message sizes and for the wider networks. It provides a reliable data delivery and also does the flow control so that the
sender does not overload the receiver by sending data at a rate faster than it can handle. TCP/IP being a connection
oriented protocol, the client needs to reconnect after a server crash.

Having selected the transport, one proceeds to choose the interface to be used to implement the Client Server Model.
Remote Procedure Call(RPC) is a well known mechanism that is used to invoke a procedure on a remote system. The
RPCs prevent the client and servers from having to worry about details such as sockets, network byte order etc. which
makes distributed application writing easier. Some accelerator control system designers choose to write their own
RPCs while others utilize the standard ones. Standard RPCs enable the writing of servers and clients in a uniform
way. Typically, they provide standard ways for finding the server process on a given host. The standard RPCs provide
a mechanism to define the request and reply messages which is vital to any distributed application. Each type of mes-
sage can be defined by its name. The request and reply data also can be defined in terms of single data items or an



arbitrary structure. Errors are handled and reported via a well defined interface. Security mechanisms, both on the
server and the client side are provided by the RPC interface. Since RPCs are available on various Unix as well as Real
Time systems, the client server code becomes portable. Various machine architecture heterogeneity is taken care of
by the standard RPCs. They also provide a uniform health checking mechanism crucial to any distributed application.
RPCs provide a mechanism to structure the request and reply data in an arbitrary, user defined fashion. RPCs in gen-
eral are well suited for synchronous type of communication, where the client blocks until the reply from the server is
received. To implement the callback type of message delivery, which is asynchronous in nature, takes extra efforts on
the part of the implementor.

Using the concepts described above, a Client-Server model has been designed and implemented for the AGS and
RHIC control systems. There are two different implementations, one for each control system, because of different
requirements and historic reasons. UDP transport was found suitable for AGS, because of the message size of 512
bytes and a small network of about 40 front ends. As UDP does not support the flow control, the clients needed to
introduce the flow control explicitly. As the RHIC supports large message sizes and is planned to have of the order of
150 front ends, TCP/IP was a natural choice. Both the AGS and RHIC accelerator device servers are designed to be
stateful. Since TCP is a connection-oriented protocol, the design needed to provide mechanisms for cleaning up the
client information from the server as the clients crash. Both iterative and concurrent services are supported by the
servers. As the vendor supplied software does not give a handle on the client-server connection timeout, a Unix signal
is used to interrupt the system connect call. In the case of a server crash, the TCP-based clients need to reestablish the
connection with the server. In contrast, UDP based clients do not have to worry about it. Both blocked and callback
type client messages are supported. Client-server implementation is a C++ class library and is portable across Unix
and VxWorks operating systems. The class library is based on the standard SUN Open Network Computing(ONC)
RPC communication interface. The capability of adjusting the network buffer size and time-outs is also provided. The
rpcinfo program supplied by RPC is used for checking the health of the server. To get a handle on more server spe-
cific information, the server diagnostics provides information such as start-up time, the machine name on which it is
running, the number of synchronous and asynchronous messages it has handled from the start-up time and so on. It
also provides the information about callback clients. Typical diagnostic information is as follows:

ADOIF SERVER DIAGNOSTICS INFO

Host Name: acnfec007.rhic.bnl.gov
startupTime: THU OCT 19 08:30:28 1995
RPC Program Number: 1000002

RPC Version Number: 0

TCP Socket Number: 19

Port Number: 990

Receive Queue Size: 10000 bytes
Send Queue Size: 10000 bytes
Synchronous Messages handled: 2784
Asynchronous Messages sent out: 9178
Asynchronous Active Requests: 328
Async Clients Being Served: 4

Async Client Addresses being used by the ADOIF Server

Client Address No 0

Host Name: acnindy04.rhic.bnl.gov
RPC Program Number: 1073742096
RPC Version Number: 1



Server Port Number:
Process Id:

Client Address No 1

10998
16272

Host Name: acnindy02.rhic.bnl.gov
RPC Program Number: 1073742226

RPC Version Number: 1

Server Port Number: 12741

Process Id: 1402

Client Address No 2

Host Name: acnindy02.rhic.bnl.gov
RPC Program Number: 1073742231

RPC Version Number: 1

Server Port Number: 12744

Process Id: 1407

Client Address No 3

Host Name: acnsunl7.pbn.bnl.gov
RPC Program Number: 1073741829

RPC Version Number: 1

Server Port Number: 44807

Process Id: 26005

7. Conclusions

The Client-Server Model is a standard model used in the accelerator controls applications. There are various server
and client design issues. They include concurrent versus iterative services, stateless versus stateful servers, message
security, machine architecture, software vendor and server version independence. The design of built-in mechanisms
to send and receive different types of messages such as send-only, blocked, callback, broadcast etc. is necessary. To
improve the server performance, proper flow control on the client side is necessary. Selection of network time-outs
and selection of proper network buffer sizes is a key to performance tuning. Standard RPCs are well suited to imple-
ment a Client-Server model as it addresses most of the design and implementation issues of such a model. A Client-
Server model implementation that handles callback type messages tends to be more complex and involved than one
that handles only synchronous type messages.

References

[1] J. R. Corbin, The Art of Distributed Applications, Springer-Verlag New York

[2] W. Richard Stevens, Unix Network Programming, Prentice Hall

[3] W. Rosenberry, D. Kenney, G. Fisher, Understanding DCE, O’Reilly Associates, Sebastopol, CA
[4] J. Bloomer, Power Programming with RPC, O’Reilly Associates, Sebastopol, CA



