
The DØ Experiment Significant Event System

S. Fuess, S. Ahn, J. F. Bartlett, S. Krzywdzinski, L. Paterno
Fermi National Accelerator Laboratory

L. Rasmussen
State University of New York, Stony Brook

Abstract

A Significant Event System for the DØ Experiment Online Data Acquisition (DAQ) system has
been operational since 1992. The system collects and distributes messages related to alarms,
heartbeats, and DAQ state transitions. In this paper we give an overview of the hardware and
software elements of the system, describe the data flow, give details of the message structure and
individual applications, and present an example which illustrates the operation of the system.

I. HARDWARE ELEMENTS

The Online Data Acquisition (DAQ) System for the DØ Experiment was developed with two independent data paths:
a high speed customized uni-directional event data path and a standard network bi-directional control and monitoring
path [1,2]. A major software component utilizing the monitoring path is the Significant Event System, which
manages alarm, heartbeat, and run-state transition messages.

There are three principal hardware components of the monitoring path which contribute to the Significant Event
System: Front End systems, a connecting network, and a Host cluster. The Front End systems, which act as the
interface to the detector and other environmental monitoring and control devices, are based upon the Fermilab LINAC
control system [3,4,5]. The majority of approximately 35 Front End systems are based upon a 68020 processor
residing on a Motorola VME133A card, accompanied by a memory card, a Token Ring interface card, and a utility
card which drives an external monitor. Each processor has access to the VME bus of the crate within which it is
located, access to other VME crates via a Vertical Interconnect bus extender, or access to other monitoring devices
via a MIL-1553B serial link. The remainder of the Front Ends are individual IBM PC systems, which acquire
information via various external connections. All of the Front Ends operate by continually repeating (at 15 Hz for
the VME based systems) a cycle of data acquisition to fill a local data pool, compare the readings to a local database
of analog nominal and tolerance or binary nominal values, and generate and/or process messages. Each Front End
system can monitor several thousand analog and binary channels.

The Front End systems are all connected to a Token Ring network. A set of three identical and parallel Gateway
nodes act to connect the Token Ring to the Ethernet network used by the remainder of the control and monitoring
path elements. Each gateway is a single-board MicroVAX computer running the VAXELN operating system. The
peak capacity of each node is approximately 50 to 80 kilobytes per second, depending upon the record size. At peak
load, during the trigger condition downloading phase of running, the Token Ring LAN operates at approximately
30% of capacity.

The Host system for the DØ Experiment is a VAX and Alpha mini-computer and workstation cluster running the
VMS operating system. In addition to the event data acquisition tools, a suite of applications dedicated to the
collection and monitoring of significant events runs on this system. These applications will be described in
Section 3.

II. DATA FLOW

Figure 1 illustrates the data flow for the Significant Event System. The central application in the system is the
Alarm Server, to which all messages are sent and from which all messages are distributed. There are several message
types passed among cooperating applications, the most important of which is the significant event message (also
referred to as alarm message). The other message types are heartbeats, filter profiles, database requests, database
replies, and run-state control information. The latter group of message types are specific to certain tasks, whereas
the significant event message is a more general form which serves multiple purposes.

Figure 1: Data Flow of Significant Event System

A significant event message contains the following information: a state transition code indicating a good to bad
transition, bad to good transition, or informational only; a device and an attribute name; the front end system (or
other application) identity and local identifier; a corresponding database identifier; a priority value from 0 (low) to
255 (high); the time and date; and a supplementary block which depends on the nature of the device. For analog
devices the supplementary block contains the nominal, tolerance, and current readback values. For binary devices,
the supplementary block contains the nominal bit value and the current readback. There is also a comment class of
devices (principally used by software applications) which has a 128-character string in the supplementary block.

Figure 1 indicates the flow of significant event and other messages. The next section describes the applications that
produce and consume these messages.

III. APPLICATIONS

There are three classes of applications within the Significant Event System. They are the significant event
generators, the Gateway, and the significant event consumers.

A . Significant Event Generators

Significant events are generated by Front End systems, Host applications and other software applications within the
Data Acquisition path. The Front End processors, upon noting readings which are inconsistent with their local
databases of nominal and tolerance values, place messages on the Token Ring. Such messages are multicast with an
identifying group functional code. On the Token Ring the significant event messages are framed within the ACNET
(Fermilab Accelerator network transport) protocol, which allows for an accompanying data format block indicating
the elemental composition (bytes, words, long words, quad words, floating point, and strings) of the message.

Alarm
Logger

DBR

Trigger
Proc.

Alarm
Watcher

AlarmAlarm
ServerServer

Data
Logger

Run
Control

Gateway

Host
Applics.

Alarm
Display

Database
Server

Alarm
Scan

Alarm Log Database

Data Log

SE

SE

Data Path

FUN

SE

SE

SE,HBT

SE,HBT

SE,HBT

F

SE

SE,HBT

SE,HBT

DB

RC

DB

SE,HBT

RC

HBT

Key:
SE = Significant
E tHBT =
H tb t FUN = Functional

C d F = Filter
t DBR = Database
t DB = Database

i fRC = Run

Front
End

SE,HBT

User

User

DB

Database

User

A major component of the data path is a set of processors running the software trigger code. These processors are
VAX workstations using the VAXELN operating system, and executing FORTRAN and PASCAL reconstruction
and filter code. A library of routines callable from these languages within ELN is provided by which significant
event messages can be generated and transmitted by DECNET to the Host system.

Applications can also generate significant event messagesn the VMS Host system. A set of routines for VMS is
provided to generate and transmit the messages by mailbox (local) or DECNET (remote). The typical suite of
applications includes run control, event logging, event monitoring and detector monitoring tasks.

B. Gateway

The Gateway processors also run the VAXELN operating system. The purpose of these nodes is to provide the
interface between the Token Ring and Ethernet physical layers and additionally between the ACNET and DECNET
protocols. As previously indicated, ACNET protocol messages have a format block that describes the internal data
structure. The Gateway tasks use this information to perform the appropriate conversions to account for the byte
order and floating-point representation differences between the Front Ends and the VAXes.

The Gateways maintain independent logical connections to all DECNET clients, including the important connection
to the Alarm Server task. Each client is allowed to select the addressing modes of Token Ring messages in which it
is interested; the Alarm Server picks the messages with the group functional code assigned to significant event
messages, and hence sees only such messages. The Gateway tasks also buffer incoming and outgoing messages for
each remote client, and hence improve the overall bandwidth on each logical circuit.

C. Significant Event Consumers

A set of applications exists on the VMS Host system to process significant event messages and to provide
information to the detector users. These applications are written principally in PASCAL with some FORTRAN.
All are based on a common layered structure, with application specific routines calling routines from a generalized
client / server package, which uses an InterTask Communication package, built upon either asynchronous VMS
mailbox (local) or DECNET (remote) task-to-task communication.

The client / server package provides a common framework in which the internal message buffering and queuing, error
handling, and monitoring actions are provided for the shell application. The basic element of the package is the
logical circuit, with utility routines to establish and break network connections and transmit messages. Customized
callback routines may be specified to handle any abnormal condition. In the current implementation all activities are
queued asynchronously and processed synchronously. In a future implementation each circuit’s activities will occur
within an independent POSIX thread of the application.

The client / server package includes several features which contribute to the robustness of these applications. The
first feature is that of guaranteed message delivery from the server to clients. Any message that cannot be
immediately and successfully transmitted is retained and marked for retry. Every five seconds the server will attempt
to resend messages; after ten failed attempts the server will disconnect the client process. The disconnection is an
indication to the client, once it recovers from whatever caused its halted state, to reconnect and continue its activities.

Another feature of the client / server package is automatic reconnection of clients to servers. In the event of any
disconnection of the logical link between client and server, the client will continually attempt to reestablish the
connection every 60 seconds.

The Alarm Server task is the central point of the Significant Event System. It runs continuously as a detached
process on one of the Host system processors. All significant event and heartbeat messages are directed to the Alarm
Server. It distributes all new messages to any clients that have requested such. The Alarm Server also monitors all
heartbeat messages from critical processes and will internally generate a significant event indicating the failure of a
process should its heartbeat cease. The Alarm Server maintains an internal list of all devices currently in a bad state
as indicated by a significant event message; hence any newly connecting client process can be informed of the
complete state of the experiment. In conjunction with the significant event message, the Alarm Server also stores a
record indicating whether a bad condition has been acknowledged; this record can be generated either manually by an
Alarm Display task or automatically within the Alarm Server by the receipt of a significant event which is more
fundamental. An example of the latter is the ‘off’ condition of a device, which is more fundamental than significant
events associated with individual attributes such as voltages and currents being out of tolerance.

The Alarm Logger application is a receiver of significant events and thus a client of the Alarm Server. It writes each
significant event message as a single record in a sequential file. In order to avoid filling disk files with oscillating
devices, the Alarm Logger actually delays writing the record for 60 seconds; if a subsequent message arrives in that
time with the opposite state transition for the identical device, then the pattern is altered so as to eventually record
only the first and last messages of the sequence along with the appropriate counters. An accompanying user task,
the Alarm Scan, provides an SQL-like interface to the log files; for example a user may specify a time period and a
device name to examine its history.

Another receiver of significant events is the Alarm Watcher application. This task explicitly requests that only
messages above a certain priority level be transmitted. The priority threshold chosen is that associated with
significant events that affect the quality of data. The Alarm Watcher maintains an internal queue of ‘bad’ messages;
upon the transition from zero to greater than zero this task sends a message to the DAQ Run Control task to pause
further data acquisition. This action is announced to the operators via a DECtalk speaker. Once corrective action has
been taken (which should clear any ‘bad’ condition) then the DAQ operator manually continues the run, also entering
log information which is eventually used to construct a downtime report.

The Alarm Display task is the principal user interface to the Significant Event System. It is also a receiver of
significant events. Users may request only specific messages by specifying a set of filter condition groups, or may
receive all significant events. A graphical display, constructed using the MOTIF windowing system, categorizes
significant events into ‘bad’, ‘acknowledged’, and ‘good’ messages for each filter group and presents summary
counter buttons. The user may select any such counter button to get a list of devices that have generated the
messages. From this list window the user may further select a single device for numerical and textual information or
launch a parameter page control application for the device. To supply the operator with detailed information on the
device, the Alarm Display uses the database identifier encoded within the significant event message as the key to
making a database access. The operator may also choose to acknowledge the significant event by entering an
identifying comment. A message indicating the acknowledgment is returned to the Alarm Server, which generates a
new significant event propagated to all potential clients.

The main database for the operation of the DØ control and monitoring software utilizes DEC RDB. It was found
that applications directly accessing the database suffered in performance when opening the database for use, and also
required significant process resources to work effectively. As a result, a Database Server application was created from
the same set of client / server tools. Tasks accessing the database are linked with a library of client routines that
send messages to a server task, the server accesses the database, and the results are returned in a message. The
Database Server task is given substantial priority and resources, so as to centralize such needs in a single process.

IV. OPERATION

We present here an example to illustrate the operation of the Significant Event System. Consider the case where a
critical device goes out of tolerance. The Front End monitoring this device will generate an ACNET protocol, high-
priority significant event message and multicast it on the Token Ring.

A Gateway task will recognize this message as belonging to the group functional code requested by the Alarm Server
task and enter the message into the input buffer for that circuit. As the input buffer is processed, a data format
conversion occurs. The resulting message is entered into an output buffer for DECNET transmission to the Alarm
Server on the Host VAX cluster.

The Alarm Server receives the incoming DECNET message and places it on an input queue. As the message is
processed the internal state record of the experiment within the Alarm Server is updated. Client processes are checked
to see if significant event messages of this type have been requested; if so, the Alarm Server transmits the message
either by local VMS mailbox or remote DECNET connection.

One receiver of the message is the Alarm Watcher client, which is selectively monitoring high priority significant
events. The message is added to its internal queue; if this is the first such message then the Alarm Watcher
commands the Run Control process to interrupt data acquisition. A DECtalk voice indicates the pause of the DAQ
system.

The operator, having been alerted by the DECtalk message and the pausing of the run, interrogates the Alarm
Display for the cause. A new entry has appeared in the category(s) associated with this particular significant event;
the operator selects the appropriate buttons and list items to determine the nature of the problem. The original fault

can be corrected, resulting in a ‘bad to good’ significant event being generated, or the operator may choose to
acknowledge the fault and continue running. The original ‘bad’ significant event message is superseded by the new
‘good’ or ‘acknowledged’ significant event. As the operator resumes the DAQ system, a log entry is made of the
fault category.

All of this activity has also been transmitted to another client, the Alarm Logger, which has written the messages to
a disk file. Users may interrogate the log later to determine the circumstances surrounding the fault.

V. SUMMARY

The Significant Event System has been used actively at DØ since 1992. It has proved flexible with the ease that
member applications can be created or existing applications have functionality added. The system has also proved to
be robust, surviving the vagaries of detector hardware failures, network interruptions and application errors. The set
of display and logging utilities has provided the experiment’s operators with key tools.

In the future DØ will likely base more of its control and monitoring activity on products shared with the HEP
community. Many of our current products will be updated to fit within this more general scheme, while retaining
those features we have found particularly useful in the experimental environment.

ACKNOWLEDGMENTS

The authors wish to acknowledge the numerous contributions of the Fermilab Accelerator Division Controls
Department for their development and support of the Front End and Token Ring systems. We also thank the
members of the DØ collaboration for their feedback and contributions to the Significant Event System.

REFERENCES

[1] S. Abachi et al., Nucl. Inst. and Meth. A338 (1994) 185.
[2] A. Ahn et al., Nucl. Inst. and Meth. A352 (1994) 250.
[3] R. Goodwin et al., Nucl. Inst. and Meth. A352 (1994) 189.
[4] R. Goodwin et al., Nucl. Inst. and Meth. A293 (1990) 125.
[5] R. Goodwin et al., Nucl. Inst. and Meth. A247 (1986) 107.

