
Network Server/Consolidator

B. Lublinsky

Fermi National Accelerator Laboratory

Abstract

During the last several years Fermilab's control system was undergoing significant changes. More and more
individual subsystems have been taken out of Camac crates and implemented as standalone boxes connected
directly to the network. This relieves the Camac Front Ends [1] from controlling those subsystems, but
creates significant additional load on the network, and what is even worse, some of the functionality that
was previously supported by Camac Front Ends is gone with this approach. A most important feature that
was supported through Camac Front Ends is the ability to do "ring-wide" reading and setting (the same
"device" around the ring, supported through the different subsystems could be manipulated by one request).
The necessity to support this feature, without further abusing the network, forced the creation of the
network server/consolidator that is described in this paper.

1. Major system requirements.

The major requirements for this type of system are as follows:
1. It has to be flexible enough to allow adding new nodes and new "associations" between nodes;
2. It has to minimize network traffic that it originates.

The first requirement can be satisfied relatively easily by using multiple node association tables (fig 1).
Based on the table number that the request is referring to, internal software builds whatever amount of
requests is necessary to the nodes specified in the association table, sends them out, compiles the replies
together and sends results to the original requester.

Node 1

Node 2

Node 3

Node 1

Node 5

Node 8

Node 1

Node 2

Node 8

Fig 1. Association tables for Server/consolidator.

...
...

The second requirement is significantly tougher. If we examine the techniques that have been used for
implementing microprocessor based systems at Fermilab, we will find two distinct approaches. One of
them is the approach used in the Camac Front End [1]. Let us call it "no pool" approach. This approach is
usually used in the case when machine is capable of front-ending very many devices, but only small part of
them are accessed at a time. The advantage of this approach is that the machine is doing only what it has to
do to satisfy current requests. The software implementation of this approach is fairly straightforward: you
get the request, you go and get the data, you return it back. The obvious drawback is that for duplicated
requests the data will be collected multiple times. This approach is usually acceptable if acquiring the
necessary data is relatively "cheap" in terms of time and hardware efforts to get it. The second approach is
usually used in the dedicated systems with relatively small amount of data [2]. In this case, the whole
system usually runs from a fixed data pool that is collecting all system parameters. With organization like
this, data is assumed always to be there, so any request from the outside can be satisfied immediately. This
implementation usually implies two major levels of data processing: internal data collection that ensures
data pool updates with the rate that is dictated by the system requirement, and replies to the rest of the world
with the frequency specified by requests. The advantage of this approach is that the data access is always
synchronous and straightforward. The biggest drawback is that usually the system is collecting more data
that it really needs. But if the amount of this data is relatively small, pool paradigms are usually used.

For the consolidator system neither one of these two approaches will work satisfactorily. Running a fixed
data pool is virtually impossible because we don't even know up front what will be the data that we will
have to collect, and no pool solution can turn out to be too expensive from the point of view of the
network traffic. The solution that has been used for this system is a dynamic pool, the kind of approach that
is used on the consoles for request consolidation. When the system starts up, the pool is empty and no data
collection is happening. When a request comes in, the first thing that is done is check whether this data is
already available through the pool. If it is, then the request will be reusing existing data collection, if not,
then new data collection will be started in the pool. The rules for appending of the requested item to the
element of the pool are as follows:
1. Data collection frequency of the new request should not exceed data collection frequency of the existing

element of the pool;
2. Length of the collected data for the new request should not exceed length of the collected data in the

pool.

When all of the requests pointing to the specific element of the pool are canceled, this element of the pool
will be deleted. This allows us to take advantage of both approaches described above. Only the data that is
currently necessary is collected, every duplicated data collection is merged by the pool. An additional caveat
here is that one request can build many requests going to different nodes. Having these small requests going
back and forth can degrade significantly network performance. Even worse, this can saturate the network
hardware. That is why, besides pooling of the requests themselves, we have to combine outgoing requests
to different nodes as much as we can. For every new request we are comparing its reply frequency to the
reply frequencies of the requests that already exist for this node. If the frequences are close enough and the
combined reply length fits into the ACNET packet, the existing reply is killed. It is then combined with
the new request and restarted.

2. Implementation.

Consolidator/Server is implemented using a 68040 VME-based system with two networking interfaces:
Token Ring, used for communication with the cryogenic control system [2], and Ethernet, used for
communication with the rest of the systems; it utilizes the VX-Works real time kernel. It uses Fermilab's
"standard" timing and communication support [3]. The whole system is organized around three major queues
(fig 2).

The most complex part of the system is the pool itself. In order to speed up the access every element of the
pool is hashed based on the Device Index (DI) and Property Index (PI) that identify uniquely every Fermilab
device. Every incoming request is parsed for participating device requests and every device is ether linked
with the existing element of the pool or a new pool element is created for this device. Two other queues
have to do with the requests built out of original requests. Both of them are organized on the basis of the
node number of the system that they are talking to. One of them is the queue of the active (serviced)
requests; another one is the queue of pending requests. Usually pending requests are the result of one of the
nodes being down. Server/consolidator will periodically try to restart pending requests, so that if the node
that was down is rebooted, data will automatically start to come back.

3. Conclusion.

The system is completed and tested. It has been heavily used for cryogenic system support for the last
several months.

References

1. M. Glass et al, The upgraded Tevatron Front End. Nucl. Instr. and Meth. a293(1990) 87-90
2. B. Lublinsky, J. Firebaugh, J. Smolucha, New Tevatron Cryogenic Control System, "The proceedings
1993 International Conference on High Energy Physics", V3, p1817.
3. B. Lublinsky. Shell software for Smart subsytems with front-end capabilities. Nucl. Instr. and Meth A
352 (1994) 403 - 406

