
Class Analysis and the Object Model in the KEK PF Linac console

 Isamu Abe and Kazuo Nakahara

 KEK, National laboratory for High Energy Physics
 Oho1-1, Tsukuba-shi, Ibaraki 305, Japan

Abstract

The Linac device controllers (front-end computers) and mini-computers for the KEK PF, which has been
operating for more than ten years, had to be renewed during 1993 because there was no longer support from the
hardware manufacturers. In 1994, the B-Factory project at KEK was approved and will start from 1998, and this
requires the Linac to be upgraded from 2.5GeV to 6GeV. The control system also needs an increase in size for the
additional klystrons, magnets, vacuum systems and so on At the same time, the console programs must be
modified to be suitable for B-factory operation. In the modification phase, in order to reduce the maintenance and
development costs, some of the device controller SBCs (Single-Board-Computers) will be replaced by PLCs
(programmable logic controllers). Investigations[1] were launched late in 1994 in order to determine the I/O
stability and network possibilities. In this paper, the software for the device layer controller (PLC) and the
human interface layer to the B-factory are discussed on the basis of the Object Oriented Concept.

1. Introduction
An object-oriented analysis and design[2] of a human interface (operators console system) have been

adopted for the PF Linac. The old console system has a graphic display which was written using FBHG (Fujitsu
Basic High Grade) on DOS/Windows (Japanese version). It has not been very simple to change the display and
its programs, which were written in structured FBHG language. To change the conventional language to a new
OOP one requires a big paradigm shift and there are two aspects which are both good and not so good. One is
higher productivity with the OOP, although the learning cost for users is also higher. Some disadvantages of the
OOP are also becoming clear. We are therefore providing a root, or super class, from which one can derive
objects for users (developers / operators) without any programming on the new GUI (graphical user interface)
windows. Users can make control and display windows very easily and quickly by just copying a visual object
from its mother class, while inheriting methods and properties. After naming the object and changing some
properties if necessary, it can be run as a flexible user program on the Linac console.

2. Classes in an accelerator domain
For an entire accelerator domain, a rough object-oriented analysis was made,and then the control-system

design proceeded step-by-step based on an OOA (analysis) . The OOA and OOD (design) were repeated several
times for each field in the accelerator domain. As a result, we divided the accelerator control system into to two
major categories: 1) device category and 2) generic category. The generic category can be divided into classes: the
data and information process class, the generic tasks class, the beam physics class, and the GUI class [3]. In this
paper the device class and GUI class are mainly discussed.

3. Device class
The Linac is composed of many devices, such as magnets (beam transport), klystrons (RF system),

injection system, beam monitors (Beam Position Monitor, Core Monitor, Profile Monitor, etc.), vacuum
system, trigger system, control system and safety system, which are located along its length. These grouped
systems, which have physical-device objects, belong to the device category. The device category has several root
classes and/or super classes. Generally, it has subsystems as a child class. In most cases, the super class has a
definite behavior, properties and messages to be handled independently. When there are many similar device
objects, they can sometimes be classified in the same group in a bottom-up approach. Each object is derived
from its mother class. The magnet and the power supply, which are geographically located along the beam line,
are typical examples. Once they are well defined, these classes and objects do not have to be changed very often;
it is only necessary to install or remove objects when the Linac is physically modified. We may find a common
or standard class which might be shareable in several laboratories if it is well analyzed. In 1989, the device and
access procedures in an accelerator domain were well analyzed and defined at CERN as reported [4] at
ICALEPCS'91. The CERN device protocols were installed in the device-layer computers. In our system, we will
attempt to analyze objects in the near future, so as to distribute them on the two layers of the computer system
through a network, using the emergent CORBA, OLE or something similar. The root or super class, sub-class,
and device element relations are shown below:

Abstracted
 Device class magnet class

device category

Q-magnet
device-object

device elements
Device class sub-device class

steering coil

Bending magnet
grouping class

real-object

communication class

klystron class

device elements

device-object

device-object

4. Generic category
4.1) Data and information class

The data and information (with commands) exchanged between the devices or equipment of the accelerator
are defined as objects separate from device objects. Data which is sent to or received from device classes are
supposed to be processed in some way at the operator console or by a data-base system or generic task class.
Normally, data must be processed in a way that is already known, or decided by an expert based on experience or
knowledge. As an example, magnet and vacuum data are commonly displayed as real-time data or a history graph
at the operator's console, and then sent to an upper/lower level check filter for the alarm system. Since it is
already known how to process most of the accelerator data, we can make data-process classes rather easily
abstracted as re-useable ones so that data can be collected as encapsulated objects in a data base.

4.2) Generic task class
There are no actual devices in the generic task class; it is a type of heuristic knowledge class: how to

operate an accelerator, or how to run each device. There are many ways to run the Linac and each person can
have his own methods to handle the devices or the accelerator to obtain beam. Although it is difficult to find a
standard or common class in this generic task, a typical procedure must be defined for the actual operation of the
Linac. There are very few derived sub-classes in this category. Each accelerator must have its own class for every
operation or diagnosis; there will then be a few shareable common classes among the different laboratories
concerning generic tasks.

4.3) Beam physics class
Mathematical models are commonly used for beam dynamics calculations and their handling on the

networked computers. Some people use OOP methods for modeling, while others do not. Since these are carried
out at the accelerator-design phase, they are not considered here.

4.4) GUI class
In the GUI class, the object-oriented approach has been a most effective way to make an easy-to-use and

flexible graphical user interface on Windows. The accelerator GUI requires some graphical icons, which are for
abstract devices on the Windows display. The graphical icon has derived properties and methods based on its
mother class. Two layers of the mother and child classes represent a more convenient way in actual operations or
in the development phase of the GUI. A deeper class should be related to the mother class, behind which it does
not appear on the GUI. Simple changes in the properties and methods are easy to make in the property lists or
windows. There are necessary GUI elements, which should be abstracted objects or those encapsulated for the
Linac operator:

 1) Device_Icon, Operational_sw/lamp_Icon,
 2) History_graph, Two-dimensional_graph, Charts
 3) Help_menu(www viewer), Text_display,
 4) Video_display,
These Icon or GUI elements must be a re-useable mother class which can inherit many useful properties. Some
commercial software packages exist which could match our needs.

5. Device layer controller
The magnet and vacuum systems used to be controlled by SBC (single board computer) local controllers

which were connected to CAMAC. CAMAC had been running until it was replaced by the VME system. Since
we have tried to reduce maintenance costs, the replacement of the old SBC with a PLC was investigated.
Although the PLC was originally not intended for a high-speed multi-purpose machine interface, being used in
industry as well as other fields, the DAC and ADC modules are sufficiently stable for use with power supplies.
The performance of the PLC is almost good enough to control not only the magnet power supplies, but also the
vacuum systems and klystron modulators as a low-speed control. The cost is less than that of other interfaces,
such as VME or CAMAC, and maintenance is easier. Since most of the PLCs can be connected to Ethernet, it is
now possible for them to be controlled from host computers, even though each maker has its own network. The
PLC which we have selected has two CPUs: one is for I/O and the other is for communications. TCP/IP and
UDP are available protocols which are used to communicate with other computers on Ethernet. The PLC has its

own internal programming and tools, and acts as an intelligent controller using ladder logic. Even from
Windows 3.1 with a Pentium 90MHz CPU, a 10 to 20 per second refresh rate is possible with the PLC. That is
adequate scan speed for an operator when he adjusts the magnet current or other variable.

6. PLC class
PLCs are produced by several companies and there are no standards among the manufacturers. A PLC can

support various types of I/O modules: such as DI/O, DAC, ADC and IRQ. The PLC can be a member of the
super class at a device-layer computer and the I/O modules are defined as belonging to the sub-class. The PLC
super class must communicate with the PLC communication class or friend classes. In the PF Linac, the
abstracted device classes are also set on the human-interface layer so the PLC communication class could
communicate with the PLC device objects which are distributed at the device layer through the network.

7. Implementation
The PLC used for the Linac device controller will be connected to about 400 sets of magnets, 100 sets of

vacuum systems and 60 sets of klystrons, which are slow devices to control. In late 1995, a prototype will run
the vacuum system at the 2nd sector of the PF Linac. In advance of the hardware system, the first version of the
software development has been completed, based on object models using the OMT (Object Making Technique).
Device classes (klystron, magnet, vacuum, gun, monitor and others) are defined and coded as a super class on the
control pack. The instances (real objects) are derived from their control packs on the GUI windows: for example,
the magnet class has its sub class (such as Q-magnet, STC and bending-magnet). Each device class may use a
PLC object for intercommunication. It is also related to the other super (or friend) class. Since Visual BASIC
has a simple inheritance system, a common mother class has been coded based on the OMT using Visual C++
and was made as *.VBX tools on Visual BASIC. These classes were developed as a control pack which can
appear in the toolbox in Visual Basic when it is in interpreter mode. Visual BASIC has limitations in memory
size and execution time when many objects are created in the Windows derived from the mother class. A more
objective language having better OOP features is now being tested in order to solve these problems.

8. Results and conclusion
Adequate speeds for the control devices were achieved by object oriented programming in the GUI and at

the device layer. We could actually make common classes for the PLC device objects and the abstracted GUI
objects. The standard class has resulted in a flexible control system at the console of the PF Linac. The OOP
also provides users an easy way to make modifications and to produce a highly productive control system for
accelerator users or machine operators.

References

[1] Feasibility study for PLC as a device controller, A. Shirakawa, Linac conference 1995, Osaka
[2] Object-Oriented Modeling and Design James Rumbaugh, Prentice Hall, Inc.
[3] GUI object model in Accelerator control

I.abe, K.Nakahara, M.Mutoh, Y.Shibasaki, Linac conference 1995, Osaka
[4] Control Protocol: The proposed new CERN standard access procedure to accelerator equipment.

G. Baribaud and etc. ICALPCS91, p591

