
Real-Time Scheduling of Software Tasks*

L.T. Hoff
Brookhaven National Laboratory
Upton, NY, 11973-5000, USA

Abstract

When designing real-time systems, it is often desirable to schedule execution of software tasks based on
the occurrence of events. The events may be clock ticks, interrupts from a hardware device, or software signals
from other software tasks. If the nature of the events is well understood, this scheduling is normally a static part of
the system design. If the nature of the events is not completely understood, or is expected to change over time, it
may be necessary to provide a mechanism for adjusting the scheduling of the software tasks.

At the Relativistic Heavy Ion Collider (RHIC) front-end computers (FECs) provide such a mechanism.
The goals in designing this mechanism were to be as independent as possible of the underlying operating system,
to allow for future expansion of the mechanism to handle new types of events and to allow easy configuration.
Some things taken into consideration during the design were the programming paradigm (object oriented versus
procedural), programming language and whether events are merely interesting moments in time or intrinsically
have data associated with them. The design also needed to address performance and robustness tradeoffs involving
shared-task contexts, task priorities and use of interrupt service routine (ISR) contexts versus task contexts. This
paper will explore these considerations and tradeoffs.

1. Introduction

The RHIC control system adheres to the standard model for accelerator control systems[1]. In this model,
"front end computers" (FECs) provide access to accelerator equipment and generate reports to be sent to operator
consoles. In addition to these tasks, FECs are expected to perform certain routine functions, such as periodically
checking readings against range limits, logging data and closing local control loops in discrete steps. These
functions are typically scheduled-based on the occurrence of physical (real-world) events. The event may be an
interrupt from the accelerator equipment indicating that new data is available, or it may be a clock tick indicating
the completion of a time interval, or it may be a software event indicating the completion of the execution of a
software task. RHIC FECs use a real-time O/S (VxWorks) specifically so that FEC functions can be scheduled
deterministically with respect to these real-world events.

2. FEC software

RHIC FEC software has been designed to allow rapid reconfiguration using a concept called an
Accelerator Device Object (ADO) [2]. The "core" FEC software is identical in all FECs. Software objects known
as ADOs are created within each FEC, establishing each FEC's unique mission. The ADO contains the methods
for access to specific accelerator equipment and for performing range checking, closing control loops, etc. on
specific accelerator equipment. As new accelerator equipment is added to the system, or as existing equipment or
needs change, new or modified ADOs can be created, without changing other FEC software, or otherwise affecting
FEC running.

In keeping with the modular ADO design, a flexible, configurable and extensible system for scheduling
FEC functions with respect to real-world events was considered to be necessary. The ADO provides methods which
know "how" to perform a function, but the event system determines "when" to perform the function. A flexible
scheduling system allows for the possibility of tuning the speed of control loops, or changing the point in the
accelerator cycle when data is read from accelerator equipment.

* Work performed under the auspices of the U.S. Department of Energy



Using an object-oriented design approach similar to the approach used to design the ADO system, real-
world events are represented by a software abstraction called an "fec event". The following requirements were
established for the "fec event" software object; it:

• must be able to represent the following real-world events :
• millisecond clock tick
• interrupt from accelerator equipment
• RHIC Event-Link (timing system) event
• "software" event

• must be extensible to represent other real-world events

• must be able to schedule ADO and general FEC functions; an environment must provided for running
any C function or C++ class member function

• the relationship between real-world events and the ADO or FEC function which is executed in response
to that event must be reconfigurable without otherwise disrupting FEC operation

• must be able to abstractly represent real-world events in such a way that the idiosyncrasies of the source
of the real-world event and the operating system are well hidden within the object

3. Design

The fundamental design was developed quickly. The "fec event" class would be implemented in C++ (the
only supported object-oriented programming language). An inheritance tree would be developed, with a single root
or base class. This base class would handle the establishment of the relationship between real-world events and
C++ class member functions and be responsible for executing the functions. Derived from this base class would be
specific classes representing various types of real-world events. These specific classes would be responsible for
sensing the occurrence of their particular real-world event and establishing an environment in which to execute a
C++ class member function when that event occurs. The idiosyncrasies as to how the event is sensed and how the
environment is established would be encapsulated within these specialized objects.

softwareEvent classRELEvent classinterruptEvent classclockEvent class

fecEvent class

4. Tradeoffs

Although the fundamental design was developed quickly, it soon became apparent that the details of
sensing each real-world event, and especially the details of establishing an executing environment, involved many
tradeoffs.

The first consideration was how to execute both C functions and C++ class member functions. The event
system was to be used to schedule basic FEC functions (coded in C) as well as ADO functions (coded in C++).
Executing a C function from a C++ object is straightforward, using the address of the function. Executing a C++



class member function from an object of a different class is another matter. Traditionally, this problem has been
approached using one of two different paradigms.

The first approach is to define a special C++ class, known as a functor[3]. This class has a single pure
virtual function, which derived classes are expected to override to perform the desired function. There are several
drawbacks to this approach. Firstly, since C++ classes may be part of another inheritance hierarchy as well as the
functor hierarchy, it typically requires language support for multiple inheritance. Secondly, it only allows for a
single function to be executed per object. It was envisioned that ADOs might have a collection of functions to
execute for different real-world events. Finally, this approach has no C language analog, precluding scheduling
FEC functions coded in C.

The second approach is to execute only static C++ class member functions. Static C++ class member
functions are essentially C functions, so there is a direct C language analog. Furthermore, there is no limit to the
number of static C++ class member functions per object. However, static C++ class member functions cannot
access non-static class member data, nor can a static C++ class member function be virtual[4]. The latter
limitation was not viewed as terribly severe for ADO functions, but the former would prevent ADOs from
performing any tasks whose operation depended on data specific to that ADO. A simple workaround for this
problem is to pass an object pointer as a parameter to the static C++ class member function.

This last design was adopted for the event system. The base event class was designed to store a list of
function pointers (either C functions, or static C++ class member functions) and a list of parameters (either a
pointer to a C++ object, or any arbitrary value for a C function). Whenever called upon to execute a function, the
corresponding parameter would be passed to the function.

The next debate revolved around whether events are merely interesting moments in time or whether they
intrinsically have data associated with them. Some schools of thought maintain that events have data associated
with them[5]. The data is related in some way to the root cause of the event. If it is desirable for the event system
to hide the root cause of the events, so that one event type can be transparently substituted for another event type,
then a dataless design is more appropriate. The drawback of a dataless approach is that there is no straightforward
method to provide detailed information about the purpose of executing a function. The executed function must be
coded to assume that it is appropriate at the appropriate point in time. The dataless design was chosen for the
RHIC event system, though provisions were put in place to easily revise this decision if it proves to be short-
sighted.

Each specific "fec event" class is responsible for sensing the occurrence of its particular real-world event.
The mechanisms for doing so may depend on the underlying operating system as well as the nature of the real-
world event. In traditional timeshare operating systems, such as UNIX, real-world events are typically sensed via
device drivers, which execute in "kernel space". In typical real-time operating systems events may be sensed more
directly, e.g. a "user space" task may attach interrupt service routines (ISR) directly into the CPU's interrupt vector
table.

Each specific "fec event" class must establish an environment in which to execute C or C++ functions. If
the operating system uses a heavy-weight process paradigm, where each process has its own protected data space,
and all event objects exist within a single process, then a valid executing environment may be provided by the
operating system.

RHIC FECs use a real-time operating system which uses a light-weight task paradigm. Data is shared
between all tasks including ISRs. Each task is assigned a priority, and the highest priority "ready" task preempts
any other ready tasks (priority preemptive multitasking). Using such an operating system, one has latitude in
choosing how many tasks are used as executing environments, what the priorities of the tasks are and even whether
or not ISRs constitute valid executing environments. In general, the tradeoffs involve performance, robustness, and
the need for consistency between executing environments for different event types.

The advantage of using an ISR as an executing environment is a minimum overhead and therefore
maximum response speed. The drawbacks, however, are numerous. The executed functions must be ISR-
compatible, i.e. they must not use certain operating system functions, they must be fairly short in duration (since
interrupts are typically disabled during ISR processing) and they must not contain any bugs which might cause the



ISR to crash, bringing down the entire CPU. For these reasons, the RHIC event system always uses a task context
as an executing environment.

Each specific "fec event" class is responsible for setting up one or more task contexts in which to execute
the C or C++ functions. The choice of the number of available task contexts trades off overhead versus robustness.
C or C++ functions which share task contexts may affect each other's execution. This effect becomes most severe
if one function has a bug which halts the execution of the task or merely takes an inordinate amount of time to
complete. Using separate tasks for each function avoids these problems at the expense of additional overhead. Most
specific "fec event" classes choose a middle ground with a small set of task contexts sharing the load.

Under a priority-preemptive operating system, priorities assigned to the task contexts must also be
considered. Events which need more prompt attention, such as interrupt events, should use higher task priorities
than events such as clocks with a 1 second tick rate. The RHIC interrupt event class uses the highest task priority.
The event-link (timing system) event class uses tasks of two lower priorities than the interrupt event. The clock
event class uses yet a lower priority. As future specific "fec event" classes are designed, the task priorities used by
them must be appropriate as measured against task priorities used by existing classes.

5. Conclusion

The event system has been in use in RHIC FECs for several months now, though not extensively. The
system will get its first rigorous test during the injection transfer line test currently underway. Lessons learned
during this test will be used to steer the design of the specific "fec event" classes. It is expected that the object
oriented design of the event system will allow fine tuning of the tradeoffs used for particular "fec event" classes
without affecting other classes.

References

[1] B. Kuiper, Issues in Accelerator Controls, Proc. ICALEPCS 91, Tsukuba, 1991.
[2] L.T.Hoff, J.F. Skelly, Accelerator devices as persistent software objects, Proc. ICALEPCS 93,

Berlin, Germany, 1993.
[3] James O. Coplien, Advanced C++ Programming Styles and Idioms, Addison Wesley, 1992.
[4] Bjarne Stroustrup, The Annotated C++ Reference Manual, Addison Wesley, 1990.
[5] V. Paxson, Glish: a software bus for high-level control Proc. ICALEPCS 93, Berlin, Germany, 1993.


