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ABSTRACT

In this paper, we discuss results of combining various methodologies from the field of artificial intelligence
into the design of a control system for accelerator tuning. Our architecture brings together state space
search and rule-based reasoning with adaptive/learning algorithms such as fuzzy logic, neural networks and
genetic algorithms. We discuss current efforts extending the system to include a general purpose
hierarchical control paradigm, paralel distributed reasoning, an object-oriented reasoning structure and
additional heuristic control methods.

1.0 PROBLEM OVERVIEW

The goal of this project is to develop aflexible intelligent controller that can reduce the tuning time and the
need for human intervention in the control of a particle accelerator. We also wish to produce better and more
stable tunes than those that are now achieved by human operators. Various approaches have been taken to
automate accelerator control [2], [8], [12], with varied degrees of success. Most effort has been directed
toward solving specific problems for a particular facility and little effort has been directed toward developing
more general solutions applicable to the diverse specifications and tasks of a number of different
accelerators. This paper reports the status of our continuing research including efforts toward building a
genera purpose control system.

To build an environment for testing our control algorithms we interfaced TRANSPORT [1], a standard
accelerator modeling program, to Vsystem [3]. Vsystem isacommercial software product for devel oping
control systems. Vsystem provides a distributed database and tools for accessing real-time data, aswell asa
graphical environment for display and control of database channels. We began be devel oping a computer
model to simulate steering and focusing elements used in beam transport. Noise and error effectsincluding
initial beam jitter, electronic offset and drift and random gaussian noise were added to data signals to
approximate actual tuning conditions. Time dependent device behavior was also included in the ssimulation.
Figure 1 depicts the simulated beamline.
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Figure 1. Typical Beam Transport Line. Beam behavior is simulated using transport modeling
code. Measurement and control occurs through Vsystem control channels.

20 CONTROL DESIGN ISSUES

We considered many control design issues during the development of the control system. Theseinclude: 1)
adaptive vs. non-adaptive control, 2) optimal vs. "good enough" solutions, 3) scalability, 4) determination
of failure conditions, 5) online and offline learning, 6) stability in a heuristic control environment. Our



design includes a hierarchical decision maker which determines appropriate control techniques according to
the issues listed above. The controller is able to choose from a variety of control techniques and substitute
different methods according to the state of the system.

Our design uses an expert system at the top level for reasoning and control. An expert systemisa
computer program that uses an explicit knowledge base, often directly taken from human experts, along
with logical reasoning to solve complex, real-world problems [7]. Placing the expert system at the highest
level provides a controller capable of making decisions about the control problem in aglobal context,
without considering detailed issues; context specific subproblems are handled by lower-level control
modules. With direct access to the Vsystem control database, the expert system applies all pertinent
information to build amodel for solving the system and to reason about specific components and more
general tuning issues.

We used CLIPS, aforward chaining object-oriented expert system shell [4] for building knowledge
structures that represent expert knowledge in both the problem and solution domains. We separated the
beamline components into groups by function and control characteristics and then devel oped partitions that
implied certain types of solutions. That is, we developed control structures which included facts and rules
about beamline interactions as well as control techniques for solving classes of problems.

We constructed CLIPS objects for beamline components which represented both physical entities and
control characteristics. These objectsincluded static information about beamline placement and orientation,
aswell as methods for data collection and control during operation. Creating an object representation of the
system within CLIPS enabled us to place knowledge about a specific component within its representation
while maintaining a separate knowledge base representing facts and rules describing the entire system. An
object reasoning model allows appropriate encapsulation of knowledge with system objects, modularity of
reasoning and the possibility of distributed control.

3.0 A CONTROL METHODOLOGY

In this section we outline a number of heuristic methods for control of the partitioned submodules of the
accelerator. These control methods include neural (or connectionist) networks, fuzzy logic and genetic
algorithms, as well as more traditional analytic methods. In using these heuristic methods we make certain
basi ¢ assumptions about the control problem based on suggestions from Ross [9]:

1) Beamline behavior is observable and controllable. The control techniques used here rely on measurable
state input and output variables. Human agents, through constant monitoring can control the system.

2) There exists amethod for encapsulating knowledge about beamline control within the heuristic
methods. This may come from neural network learning algorithms, a priori rule-based knowledge, or
inherent knowledge encoded in the genetic algorithm popul ation.

3) Oneor more solutions exist. The set of control variablesis sufficient to produce correct beamline
behavior.

4) A "good enough" solution is acceptable. We will identify a small error range within which all
solutions are valid.

5) Optimality and stability may be shown through data flow analysis and empirical methods, rather than
through formal proofs. Because many of our control heuristics use inexact methods, formal proofs are
inappropriate if not impossible.

K eeping these assumptions in mind, we adapted the following techniques for use in accelerator control:

We experimented with multilayer perceptron networks to attempt to learn the relationships between control
and feedback components in the beamline. Unlike the traditional use of neural networksin control [8] we
did not model beamline behavior, but instead used the network to discover causal relationships between
beamline components. Although preliminary efforts were unsuccessful, work is continuing using
connectionist systems for direct beamline control [12].



Analytic techniques for control rely on beamline behavior consistent with asimple linear model. A
straightforward analytic method makes no attempt to filter noise or eliminate component errors. In genera,
this method provides an accurate solution given large signal-to-noise ratio and properly functioning
beamline components. We cannot expect a purely analytic solution to adequately tune a beamline in most
cases, especialy during initial startup. Fuzzy logic is used in the beamline controller for reasoning about
real-valued data in the presence of noise and in situations where crisp analytic methods have failed. Fuzzy
logic attempts to categorize real data sets with ambiguous boundaries. We may consider the data we receive
from beamline measuring devices as ambiguous or imprecise, because data measurement involves errors of
unknown distribution and sometimes from unknown sources. We can capture a human operator's reasoning
about thisimprecise data by specifying linguistic variables comparable to the fuzzy sets which match the
operator's (implicit) fuzzy categories. We implemented fuzzy logic versions of analytic solutions
successfully for noisy steering simulations [12].

Not only do fuzzy rules allow expert systems to reason about real-valued data without crisp data boundaries,
they also allow reasoning about how datawill be measured and evaluated. An expert system could refine
the meaning of afuzzy control variable during different stages of the solution. This refinement relatesto
the context dependent nature of fuzzy membership functions and the ability to reuse fuzzy rulesin both
coarse and fine grain solutions. For example, arule governing steering behavior may state that a small
adjustment should be made when the error issmall. The term small may have a different meaning for error
and adjustment. Furthermore, as subsequent adjustments continue to decrease the error, we may need to
adjust membership functions representing small to ensure convergence. The expert system can change the
membership function associated with a variable depending on the specific problem being solved, the
accuracy required and the current state of the system.

The genetic algorithm offers an appropriate heuristic for focusing control because it can search large
solution spaces in non-linear domains. The genetic algorithm is particularly useful when the controller
must function using incomplete information or when the system behaves abnormally due to component
failure or other unpredictable situations. We implemented a genetic algorithm for beam focusing using
genetic operators which modified magnet strengths according to fuzzy patterns. Fuzzy patterns eliminate
the need for a priori determination of magnet adjustment strengths. Since typical solution patterns can be
determined for focusing, we used a specia genetic operator to search the solution population for unwanted
solution patterns (as determined by the expert system) and replace them with solutions fitting good patterns.
We found that the fuzzy pattern matching solution focused the simulated periodic line in fewer than 100
trials and to a greater than expected accuracy [12].

40 A SYNTHESIS OF CONTROL MODULES

By incorporating the solution methods of Section 3 into a single system, we are developing a powerful
integrated problem solver that addresses many beamline tuning problems. Modifying existing solution
algorithms and adding new solution strategies can enhance the quality and speed of the system within the
current framework and generalize our solutions for use on other accelerators.
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Figure 2. A typical object reasoning hierarchy.

By placing the expert system as the highest-level decision maker for the controller, we use expert
knowledge to break the control problem into solvable units and then determine an appropriate solution
strategy for various beamline problems. Keeping decision making isolated at a single level, however,
causes problems with rule complexity and problem decomposition. Our current system makes use of a
structure which represents a control hierarchy at higher levels integrated with a physical component
hierarchy at lower levels. Figure 2 illustrates a multilevel reasoning hierarchy.

This modular decomposition of complex problems into multiple interacting subcomponentsis central to
our approach. The object oriented methodology provides data structures that "wrap" the submodulesin a
module hierarchy, where each module contains knowledge (coded as facts, rules, and procedures) describing
its functionality, as well as sets of methods for cooperating with other modules. Together the interacting
modules make up the larger system. This approach to problem solving is called by the artificial intelligence
research community asolution strategy based on the interactions of autonomous intelligent agentsand has
been used in anumber of different application areas including electricity transport management [6] and
building environment control [5].

In the most effective system, an expert system coordinates the activities of a set of independent processes
controlling small subsystems of the accelerator. The expert system manages the tuning process by
identifying and configuring subgoals based on an overall goal for the accelerator. These subgoals are then
either subdivided further or assigned a suitable solution strategy based on the goal and the current
operational state. We have found that an expert system equipped with a“toolbox” of control methods can
overcome limitations of any one control method by substituting a specific control strategy based on a
particular subsystem goal.
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Figure 3. A hierarchy for a simple beamline with transport.

Figure 3 illustrates an example control hierarchy for a simple beamline consisting of a beam source, a
transport section, and an accelerator. A top level control object representing the beamline contains high
level information about each of its subcomponents (source, transport, acceleration) and their interactions.
The beamline object also keeps track of global events and coordinates activity for responding to alarms or
errors. The transport object contains knowledge about the transport section and information about
interactions of its subcomponents, steering and focusing. Steering and focusing objects contain specific
information regarding beamline components and problem solving methods. At each level, an object’s
parent serves as an intermediary for communication between control components. For instance, the
transport object can send a message to the beamline object requesting that the input beam be more
accurately centered. The beamline object may then send instructions to the beam source object to request
the change or deny the request and send new instructions back to the transport object. Such communication
and object interaction may occur at any level in the hierarchy.



5.0 SUMMARY AND CONCLUSION

The concept of object models for accelerator systems is a methodology gaining alarge following in the
accelerator control community. Work has been done at numerous sites to develop an object framework for
describing accelerator control applications [11].

An expert system with general knowledge of the control domain exists at the top level for coordination and
control of beamline subcontrollers; smaller domain-specific rule sets exist throughout the object oriented
component module hierarchy. Distributing knowledge throughout the system has a number of advantages:
1) Rulesetsaretypically smaller; large rule sets indicate the need for breaking down the problem into
smaller components, 2) Knowledge resides at the appropriate level in the system, so control objects can
make domain-specific decisions without relying on ahigher level control object, 3) Reasoning is faster; the
conflict set for any onerule base is smaller and independent activations may be fired simultaneously in the
distributed environment.

Further discussion of our research may be found in [12], [13].
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