
Application of Object Oriented Programming Techniques
in Front End Computers*

Joseph F. Skelly
AGS Department, Brookhaven National Laboratory

Upton, New York 11973 USA

Abstract

The Front End Computer (FEC) environment imposes
special demands on software, beyond real time perfor-
mance and robustness. FEC software must manage a
diverse inventory of devices with individualistic timing
requirements and hardware interfaces. It must implement
network services which export device access to the control
system at large, interpreting a uniform network communi-
cations protocol into the specific control requirements of
the individual devices. Object oriented languages provide
programming techniques which neatly address these
challenges, and also offer benefits in terms of maintaina-
bility and flexibility. Applications are discussed which
exhibit the use of inheritance, multiple inheritance and
inheritance trees, and polymorphism to address the needs
of FEC software.

1 Introduction

The Standard Model for accelerator control systems
[1,2] describes two levels of computers, often called
Console Level Computers (CLCs) and Front End
Computers (FECs), joined by a network. The purpose of
this paper is to discuss the advantages of using an Object
Oriented Language in writing software for Front End
Computers. The benefits of Object Oriented Programming
(OOP) have been much discussed in recent conferences;
what this paper focuses on particularly is its use in Front
End Computers, and especially on the use of an Object
Oriented Language in that environment, which is more
novel. The presentation is technical, but at a conceptual
level; no code is presented. The reader is assumed to be
familiar with the basic concepts of OOP.

A basic difficulty in this endeavor is ensuring compati-
bility of the Object Oriented Language with the require-
ments of the Real Time environment. A commercial Real
Time Operating System (RTOS) is an attractive solution
to the need for providing real time performance in the
FEC, but until recently there was no commercial RTOS
that supported use of an Object Oriented Language;
hence, an effort to achieve the benefits of OOP necessarily
employed a procedural language. The use of an Object
Oriented Language offers additional advantages, which
this paper explores.

2 Historical review

The use of Object Oriented Programming in accelerator

control systems was discussed in ICALEPCS'91 and has
been revisited at each ICALEPCS since, with increasing
enthusiasm. For the most part, the discussions have
focused on the use of OOP in applications written for
Console Level Computers [2,3,4]. One contribution at
ICALEPCS'91 [5] discussed the use of OOP in a Front
End Computer, but without benefit of a formal Object
Oriented Language; this effort used an Object Oriented
approach which was written in the procedural language C,
a technical tour de force, motivated by precisely the
constraint discussed above, the unavailability of an Object
Oriented Language for the real time environment. That
report is nevertheless a lucid and complete presentation of
the software organization required for the FEC environ-
ment. Another report at ICALEPCS'93 [6] discussed
prospective development at AGS and RHIC of FEC
systems along these lines; the present report provides
additional technical description of the AGS effort.

3 Technical context of AGS front end computers

The object oriented software techniques discussed here
can be employed in any FEC, regardless of its technical
context. For the sake of a concrete perspective, however,
the AGS Front End Computer is described in this section.

The AGS control system conforms to the Standard
Model, with Unix workstations used for Console Level
Computers, and VME systems used for Front End
Computers (as well as an inventory of legacy FECs of
older design). Computer nodes in the control system are
linked by Ethernet. An application program in a CLC
communicates with an FEC by means of client-server
techniques, using a Remote Procedure Call (RPC)
protocol. The FEC nodes employ Single Board Computers
with 68040 processors, residing in VME crates. The FEC
runs a commercial Real Time Operating System
(VxWorks) which is C++ friendly. The FEC-resident C++
objects which implement the accelerator device interface
are called Accelerator Device Objects (ADOs) [6].

Accelerator Device Objects may be characterized as
containing either homogeneous or heterogeneous data
types; AGS ADOs are heterogeneous. This means that a
single ADO contains data of multiple types, and provides
an Application Programming Interface which commu-
nicates multiple data types. All AGS ADOs contain up to
4 command fields and up to 16 status fields; command
and status fields are of type "char". In addition, AGS
ADOs may contain setpoint and measurement fields
which may be of another type, eg. type "int" or "float".

Use of heterogeneous ADOs permits all features of a
complex accelerator device (such as a power supply or
vacuum gauge) to be integrated into a single ADO.

4 Challenge of accelerator device objects

The fundamental software challenge presented in an
FEC environment is orderly management of a broadly
diverse inventory of ADOs while taking advantage of the
substantial common features they possess. Perhaps the
most significant such feature is a common Application
Programming Interface, usually implemented via calls into
device object methods from an RPC server task.

The diversity found in the ADO inventory is motivated
by the diversity in underlying accelerator devices. This
diversity is manifested in such characteristics as:

• Hardware interface
• Behavior
• Data content
• Timing requirements

This issue is addressed herein as a series of 5 specific
challenges, along with their solutions. Each of these
solutions is a simple application of a standard feature in
Object Oriented Languages; the feature set assumed here
is that of C++. By means of examples for each of these
solutions, a set of ADO classes is developed, which
implements a model of the device classes needed in an
FEC software environment. In this context, only the ADO
class software is discussed; there is no discussion of the
procedural software required to implement RPC server
functionality.

4.1 Challenge 1: Device inventory management;
solution: inheritance

The challenge of device inventory management is
addressed with inheritance. A base device class is
defined, from which all other device classes are derived;
this class might be called the "ADO" class. Then a single
array of "ADO" objects will serve as the inventory record
for all device objects, whether of the base class or of
derived classes. The base "ADO" class possesses a set of
methods which define the fundamental common behavior
and interface for all derived classes.

For example, one might derive the following list of
classes from a base "ADO" class.

class ADO
• class PowerSupply
• class TimingDevice
• class VacuumGauge
• class BeamPositionMonitor

4.2 Challenge 2: Diversity in hardware interface and
behavior; solution: polymorphism

The challenge of diversity in hardware interface and
behavior is solved using polymorphism, ie redefinition
(overriding) of methods. The diversity in the classes

derived from the "ADO" class can usually be confined to a
few methods, and only these few methods need be
redefined for each of the derived classes to implement the
desired functionality.

For example, the "ADO" class might define the
following methods

class ADO Methods

GetImmediateReport - report state of device
GetDeviceDetails - report device configuration details
RequestReport - request reports on ensuing accelerator

cycles
SendReport - send previously requested report
Watchdog - check device state, send error report if any
AcquireState - obtain state information from hardware
CommandToDevice - send new command to hardware
WriteArchive - write cache record for device
ReadArchive - read cache record (restore state after

reboot)

The first 4 or 5 of these methods mainly implement
client-server features, and the base class methods are
probably valid as well for all derived device classes; one
might debate the issue for the "Watchdog" method, based
on behavioral considerations, and override on a case-by-
case basis as needed. The "AcquireState" and
"CommandToDevice" methods deal with the hardware
interface, and certainly would be overridden. The last 2
methods help implement device persistence when an FEC
is rebooted; the base methods here are probably adequate
for derived classes as well.

The combined use of inheritance and polymorphism
promotes extensive reuse of common methods, enhancing
efficiency and maintainability.

4.3 Challenge 3: Diversity in data content; solution:
templates

For each of the classes derived above from the base
"ADO" class, one would probably employ different data
types for the setpoints and measurements, eg:

Power Supply Signed int

Timing Device Unsigned int

Vacuum Gauge Float

Beam Position Monitor Signed int

This challenge can be addressed by using a templated
ADO class, with the data type of the setpoint and
measurement specified by the templated type. In this
way, the code which handles setpoints and measurements
need be written only once, resulting in substantial code
reuse, and therefore efficiency and maintainability. The
notation for such a templated class is, eg, ADO<signed
int>.

4.4 Challenge 4: Semi-homogeneous subsets of devices;
solution: multiple inheritance

A hypothetical FEC might have an inventory of Power
Supply devices and VacuumGauge devices which were all
interfaced using the General Purpose Interface Bus
(GPIB); certain types of operations would be common for
all GPIB devices. The challenge here is to deal efficiently
with this commonality. An effective solution is the use of
multiple inheritance. A new base class can be defined to
deal with the common properties of GPIB-interfaced
devices, perhaps named "GpibUnit"; device-specific
information such as its gpib address would be private to
each "GpibUnit" object.

In this case, one might define the following methods for
the "GpibUnit" class:

class GpibUnit Methods

TransmitCmnd - transmit a command (over gpib)
ReceiveState - request state information, receive it (over

gpib)

Then the "PowerSupply" and "VacuumGauge" classes
are derived from both the "ADO" and "GpibUnit" classes.
Methods in the "PowerSupply" and "VacuumGauge"
classes could invoke the Transmit Cmnd and Receive
State methods as necessary. The inheritance relationship
then looks like this:

 ADO<signed int> GpibUnit ADO<float>
 \ / \ /
 PowerSupply VacuumGauge

As above, use of multiple inheritance promotes code
reuse.

4.5 Challenge 5: Chains of semi-homogeneous subsets of
devices; solution: inheritance trees

A not uncommon circumstance is the need to support
two (or more) almost identical power supplies, with only
minor differences. For example, two sets of supplies from
the same vendor, with one set operating in a monopolar
mode and the other in a bipolar mode. The vendor has
provided subtly different command strings to accommo-
date this situation. The solution here is to develop an
inheritance tree which reflects the situation. An inter-
mediate class eg "VendorPowerSupply", is provided to
implement the common features, and then derived classes,
eg "BipolarPS" and "MonopolarPS", handle the distinctive
features. The inheritance tree looks like this:

 ADO<signed int> GpibUnit

 \ /
 VendorPowerSupply
 / \
 BipolarPS MonopolarPS

Through the use of polymorphism, the final derived
classes, "BipolarPS" and "MonopolarPS", can be
extremely terse, since most of their features are
implemented in the "VendorPowerSupply" class. Yet
again, this approach promotes code reuse.

5 Conclusion

Use of each of these techniques leads to substantial
efficiency in development and maintenance of software,
due to the extensive reuse of code in Accelerator Device
Object classes. It is equally important to note that these
techniques also make the software more readable and
comprehensible.

Development of such an FEC software environment
began at the AGS in 1993, and commissioning began in
1994. These systems have been in operational use at the
AGS since 1995. At present, 17 such FEC nodes are
operational, supporting a total of some 8250 device
objects, representing 125 different device classes. There
are also some 30 legacy FECs of older design which will
be either retired or replaced by FECs of the new standard.
Beyond this goal, deployment of new FEC services (eg
more capable RPC server features) as well as protocol
improvements is envisioned.
__
* Work performed under the auspices of the U.S.
Department of Energy.

Reference

[1] B. Kuiper, "Issues In Accelerator Controls", Proc.
ICALEPCS 91, Tsukuba, 1991

[2] V. N. Alferov, et al., "The UNK Control System",
Proc. ICALEPCS 91, Tsukuba, 1991

[3] J. Skelly, "Object-Oriented Programming Techniques
for the AGS Booster", Proc. ICALEPCS 91, Tsukuba,
1991

[4] J. Chen, et al., "CDEV: An Object-Oriented Class
Library for Developing Device Control Applica-
tions", Proc. ICALEPCS 95, Chicago 1995

[5] A. Götz, et al., "Object Oriented Programming
Techniques Applied to Device Access and Control",
Proc. ICALEPCS 91, Tsukuba, 1991

[6] L. T. Hoff and J.F. Skelly, "Accelerator Devices as
Persistent Software Objects", Nucl. Instr. and Meth.
in Phys. Res. A 352(1994), 185-188

