Object-Oriented Technology in LabVIEW Programming

Kirill Rybaltchenko
JNR, DUBNA

Abstract

LabVIEWI1] is a powerful graphical package accessing
any type of equipment of acceleratoré controls and
offering well-designed Graphical User Interface (GUI).
This paper consider the questions about LabVIEW
programming in Object-Oriented manner and integration
LabVIEW to the high-performance distributed Object-
Oriented software system using modern technologies
(CORBA).

1 Introduction

Now LabVIEW becomes more and more popular
development environment to create a software controlling
the different kinds of equipment in the control systems of
accelerators. The control group of the SPS and LEP
accelerators at CERN, Geneva, uses LabVIEW to control
different accelerator subsystems, such as Beamloss moni-
toring system, Hydrostatic levelling system, Bunchlength
mesasurement system, etc. LabVIEW uses a software
package (SL-EQUIP) to access any equipment connected
to any fieldbus (BITBUS, GPIB, RS-232, JBUS) remotely
[2].

LabVIEW
+

SL-EQUIP

—

Workstations

Accelerator Network

VME
crates

Equipment

Fig. 1

For example, in the Multi-Orbit Positioning (MOPOS)
Timing Diagnostics system the LabVIEW program running
on HP workstation controls 9 GPIB-oscilloscopes installed
around SPS ring (fig.1). And sometimes the controlled
system has a dynamically changeable configuration. For

example, in the Time-Division Multiplexing Monitoring
system the LabVIEW collects data from more than 70
points installed around accelerators and every point has
different changeable configuration. In this example
LabVIEW wuses an ORACLE [3] database as a
configuration database. In those examples there are strong
requirements for the program flexibility: program should
be able to connect to or disconnect from the system its
different parts dynamically, keep current information
associated with active parts of system. In that case the
implementation of the OOP technology seemed to be very
useful. Of course, we cannot say about OOP in a full
meaning because of the LabVIEW graphical programming
language 2G2 is not an Object-Oriented language. But
some aspects of OOP are applicable and could give some
profit.

Let® consider a system of several devices, for instance
oscilloscopes, like in the MOPOS Timing Diagnostics
system. We can suppose even more complicated system:
some of that scopes are Tektronix TDS-320, another are
Tektronix TDS-210, some of them have RS-232 port
instead of GPIB interface. And the configuration of the
system may be changed: operator can include or exclude
some devices from the data acquisition process in the run-
time. In that case an implementation of OOP could help to
avoid extra-complexity.

What is the typical way to write the OO program for
device in C++? We creste the class of devices describing
entire family of devices, for instance scopes TDS-2xx and
TDS-3xx. This class contains function-members to
perform on that family of devices and all data-members
containing the information about the current state of
particular device. It may be the following functions:
Vertical Setup, Horizontal Setup, GetData, etc. This class
contains the Constructor and Destructor as well.
Congtructor, for instance, alocates memory for data
associated with this device instance, opens connection to
the device, performs device initialisation sequence, reads
start-up values of device parameters. Destructor puts the
device back to the local state, terminates the connection
and release memory, alocated for this device instance. If
wedl like to create a class for TDS-210 device, for
instance, we create a subclass of this basic class and
redefine the members unique for this particular device
type.

How this methodology can be implemented in a
LabVIEW programming? Normally all devices in family
have the same set of functions. They differ from each other
just in a format of command and response, number of
controlling parameters. We create a global data table
describing all common commands and parameters (fig.2).

This table is sharing between all device instances.

DESCRIPTOR T;’—HIG m
[GFIB:TDE_340::RFC | L command] write_param| M' command| write_param|
NI [MOD I | [;DESE || |
" : byte_read| read_param| byte_read| read_param|
J command] swrite_param| af i
a0 [| fhooo |
[OFFESR? ||
byte_read) reacd_param| WERT| MISC
| ﬂ a
/100 | l | o | command] write_param| M e
CLOSE |%3,’:|:H%3: | |
i bwte_read| read_param|
M command] swrite_param| eI |
[MISC D | 1
byte_read read_param| HORIZ
] da’@]
=0 | | | =l | comrmand] write_param| = Y
[HOR? I | LA param|
| | El
D DEVICE byte read] read_param) Yoo |Hoo | #0_|FFies]
& | C
05 210 %500
ﬂl:l
h | REAFRM 4
channels
iy fo | .
L state| ||[state) ||state| [|state command| write_param|
o] o] |ford |[ord] | FEEEEE—
bwte_read reac_paranm
rrvcocd 2| |{f rrocecd 2 | Jf rrvcocd 2| (1] Prococd 2 ; | =i |
e |[or] | [z {[or] I
COM SEF ::;j.& sB33i0N
; Instr
Fig. 2
GPIE:MOFODS 105 RPC:TDS210
B =RPC: ch_ou or_ou Fig_ou
GPIE:MOFDS 205 RPC:TDS340 h_out hi t t t
GPIE:MOPOS_305:ASRL:TDS210)| A (2= [=ns]
Tlum TIE ZIJJJ TLE 10
| COHFIE COHFIE
b d B VERT ORIz
MTEK Initialize wi| MTER Vertwi] MTEK Horiz vi MTEK Close wvi

Fig. 3

When constructor creates an instance of device it creates a
local data table containing al elements unique for this
instance. All tables have the same fields. For instance,
@Horizontal ¢field contains the format of command/respon-
se string and current Horizonta settings of the device. And
the member-function HorizontalSetup sends takes from
this field appropriate command, sends it to the device,
extract all parameters from the device response using
format response string and put all parameters to their
places. So there is only one function Horizontal Setup for
all devices. The block-diagram in fig.3 demonstrates how it
can be implemented.

This small program opens connection to three devices of
different type with different interface types. MTEK_

Initilizevi (Multiple Device Constructor) creates the
instances of al devices and puts the array of references to
these instances to all other functions. There is no need to
take care about properties of every device functions pick
up al what it need from data associated with that device
and pointed by this reference to device instance.

Another important part of implementation OOP in
LabVIEW is the communication between LabVIEW
program and Front-End computers or between different
Back-End applications (one or more of them are the
LabVIEW applications) running on the different compu-
ters. If both applications are object-oriented, the old-
fashioned communication software becomes bottleneck of
such system. Now the CORBA [4] standard becomes more

and more popular as a communication environment in the
object-oriented software. An ILU [5] is one of the CORBA
realisations which was tested for the Front End —Back End
communication. The evauation of ILU figured out that
LabVIEW could be integrated easily in the distributed
computing system using CORBA standard and the modern
CORBA redlisations like ILU could be implemented for
the Front-End —Back-End communication.

Acknowledgements

I would like to thank my colleagues in SL division
(CERN) and in LCTA JINR (Dubna) who helped me to
test and to develop this software.

References

(1]
(2]

(3]
[4]

(9]

LabVIEW - trademark of National
company.

Integrating Fieldbuses at the application level: C
interface and LabVIEW integration - VITA Europe
Congress 7-9 Oct. 1996, P.Charrue, K.Rybaltchenko.
ORACLE - trademark of ORACLE corporation.
CORBA - Common Object Reguest Broker Architec-
ture standard developed by Object Management
Group.

ILU - Inter-Language Unification system - free
software package developed by Rank Xerox
company.

Instrument

