
Control of Distributed Data Acquisition Systems Using Object

Oriented Methods

G. Kemmerling, M. Korten

Institut f�ur Plasmaphysik, Forschungszentrum J�ulich

EURATOM Association, 52425 J�ulich, Germany

M. Drochner, P. W�ustner, K. Zwoll

Zentrallabor f�ur Elektronik, Forschungszentrum J�ulich, 52425 J�ulich, Germany

Abstract

EMS (Experiment Message Speci�cation) is a ex-

ible software package, designed to build scalable dis-

tributed data acquisition systems for experiments at

the Cooler Synchrotron (COSY) at the Forschungszen-

trum J�ulich. It uses an object oriented hardware map-

ping for control and monitoring, which is logically

based on MMS and FMS standards. Access from the

experiment workstation is realized through TCP/IP

socket communication, managed by a dedicated pro-

cess on the workstation. The system is now 4 years

in operation and an adaption to PC technologies is

currently under development. Within the context of

this upgrade, also the special communication process

should be replaced by a standardized tool. The object

oriented Common Object Request Broker Architec-

ture (CORBA) is seen to address the problem in an

adequate way.

1 Introduction

The Cooler Synchrotron COSY at the Forschungszen-

trum J�ulich is a proton accelerator and storage ring,

designed to investigate in medium energy nuclear and

particle physics (40 to 2500 MeV). There are several

experiments, located at internal beam and external

target positions. Depending on the physical program,

various hardware con�gurations are used and even-

trates up to some thousand events per second are

achieved.

In order to cope with these requirements, a exi-

ble distributed architecture was choosen for the de-

velopment of the data acquisition (DAQ) [1]. The

system consists of a scalable amount of digitizing

crates in CAMAC, FASTBUS and VME standards,

each equipped with its own intelligent Readout Con-

troller (ROC), and an Eventbuilder (EB) crate in

VME with several processors to combine and store

experiment data as an event on tape. All intelligent

devices use Motorola processors of the 680xx family,

running OS-9 as operating system. While the trans-

fer of experiment data is established by VICbus in-

terconnections between front-end and event-building

controllers, control and monitoring of the system can

be performed from an experiment workstation via an

Ethernet-based LAN.

The system software is logically based on MMS

(ISO 9506) [2] and FMS (DIN 19245) [3], powerful

application layer protocols for distributed automation

systems in industry. Because it is related to physi-

cal experiments, it is called EMS (Experiment Mes-

sage Speci�cation). EMS provides an object oriented

client/server interface to the DAQ. All front-end de-

vices and their functionality are mapped to abstract

objects, which o�er a set of services for control and

con�guration. The communication between clients

and servers is managed by a dedicated process on the

workstation and is based on TCP/IP sockets, using a

proprietary protocol for exchange of data.

The system is now 4 years in operation at vari-

ous physics experiments, but the increasing amount of

data asks for a major revision [4]. Because of the very

limited market size of readout controllers, especially

for CAMAC and FASTBUS, and their long CPU life-

times, a migration of the system to PC-technologies

is currently under development. Instead of expen-

sive embedded intelligent ROCs and EBs, transpar-

ent controllers with a connection to PCI/PC based

CPU boards will be used. This approach allows on a

very economical way to comply with the new demands

by following the rapidly improving CPU performance

on the PC market. As operating system for the PC-

boards, the freely available NetBSD distribution was

choosen, providing a homogeneous UNIX environment

in the whole DAQ system.

Within the context of this upgrade, the system

should also be opened for a standardized access

method. By retaining the large investments in soft-

ware development of the EMS interface, the commu-

nication process on the workstation will be replaced by

the object oriented Common Object Request Broker

Architecture (CORBA) [5]. Thus, the implied partic-

ular platform and protocol issues and therefore higher

manpower requirements can be avoided.

The following sections describe the advantages of

EMS and CORBA and the bene�ts for a combination

of both systems. Work is inuenced by another project

at the Forschungszentrum J�ulich, where the integra-

tion of a DAQ-system with CORBA has already been



shown promising results [6].

2 Experiment Message Speci�cation (EMS)

The central object in EMS is the Virtual Experiment

Device (VED). It represents a ROC or an EB and acts

as server for clients on the experiment workstation. A

VED models the externally visible behaviour of the

server and o�ers the resources and functionality asso-

ciated with a real device for control, monitoring and

event data transfer. In such a way, the client process

on the workstation communicates not directly with

di�erent application programs in the distributed data

acquisition system, but always with VEDs, providing

a uniform view and access, independent of the type of

the speci�c server.

Clients

Server

Mapping

VED

Instrumentation
System

Program
Invocation

Variable

Dataout

Domain

EMS-
Communication

Figure. 1. Object oriented hardware mapping in EMS

As shown in �g. 1, a VED contains a set of generic

objects, that help to coordinate the access to the func-

tionality represented by the speci�c object. A short

description of these objects is given below:
� Variable, either a single integer or an array of

integers in VED's memory,

� Domain, a loadable image consisting of data,

� Program Invocation, an executable program

related to one or more domains,

� Instrumentation System, the main building

block for the server, a complete functional unit

with a logical or physical meaning, consisting of

one or a group of hardware modules, a set of pro-

cedures e.g. for event readout, initialisation and

set-up including necessary lists,

� Data Output, dedicated to a sequential data re-

cording device, a bu�er or a communication link.

Whereas the Domain, Variable and Program Invoca-

tion are well known objects of MMS and FMS, the In-

strumentation System and the Data Output are dedi-

cated to the experiment's needs. The de�nition of the

instrumentation system reects the fact that an ex-

periment should normally o�er a higher exibility to

the user than a manufacturing device. The VED cor-

responds to the Virtual Manufacturing Device (VMD)

in MMS.

The servers consist of the EMS-interface and hard-

ware dependent code. The connecting link are local

procedures, which must be programmed according to

the application needs. A complete program is exe-

cuted by a sequential interpretation of a list of local

procedure calls, downloaded from a workstation client.

A global list of the hardware modules and their types

is stored in corresponding data structures.

Client programs on a workstation are developed

by the use of C and C++ libraries, which allows

access to EMS-services via the communication pro-

cess. The communication process can manage several

client/server connections at a time. In particular, it

has the following tasks:

� queueing of requests from several clients for one

server, so that the server only works on one re-

quest at a time,

� assignment of logical names to server addresses,

� handling of fault conditions, debugging and log-

ging - some transport protocols (e.g. OS-9/net)

are not able to recognize unexpected breaks of

connections,

� management of asynchronous messages (so called

unsolicited messages.

There are currently several client applications used

for experiment control, based on X-Motif, InterViews

or Tcl/Tk. For smaller applications and test systems,

an interactive script interface is also available.

3 Upgrade of communication architecture

The key boundary condition for the migration to PC-

technologies was to gain improvements with preserv-

ing as much as possible the existing instrumenta-

tion and software developments. However, the pro-

prietary communication process on the workstation,

which was originally introduced to handle OS-9 short-

comings, will be replaced by a standardized and plat-

form independent software tool, that is able to tie the

client/software applications together. The CORBA

architecture was selected for this purpose.

CORBA is an speci�cation of a object-oriented ar-

chitecture for distributed applications, which is de-

�ned by the Object Management Group (OMG) [7].

It combines the bene�ts of object-orientation and dis-

tributed computing and allows clients to invoke meth-

ods on server objects transparently, without knowing

the object's location or the programming language



used for the implementation of the object.

Clients

Object Request Broker

VED

Figure. 2. Communication between clients and server,

managed by the Object Request Broker

The core of the whole architecture is the Object Re-

quest Broker (ORB). The ORB is responsible for the

delivery of client-requests from one computer to ob-

jects possibly on another computer (e.g. a front-end

controller) as well as for the return of resulting infor-

mation (see �gure 2). By hiding all details of data

transmission from the client, it facilitates the commu-

nication between clients and server. Therefore, the

user can concentrate on the implementation of the

objects services and their usage in client programs,

avoiding all pecularities of communication. To target

an object, the client only has to specify the object

reference, which is created when the object is created.

By usage of CORBA, the EMS-objects and data

structures are described by interfaces in the standard-

ized Interface De�nition Language (IDL), indepen-

dent of any programming language. The mapping of

such interfaces to client/server source code of a spe-

ci�c programming language is performed by the IDL-

compiler of the CORBA implementation. There are

many CORBA implementations on the market, avail-

able on almost all popular computer platforms. As

language mappings of IDL, vendors usually provide

C++, C or Java. Thus, the introduction of CORBA

not only extends EMS to platforms and operating sys-

tems not supported so far, but gives the user also

the possibility to choose between some programming

languages for the client implementation. The usage

of Java, for instance, has the advantage of building

client applications for EMS, which directly can be in-

serted in Web-browsers. Furthermore, with the IDL-

de�nition of EMS a strict division of client and server

side is achieved, resulting in a better maintenance of

software. To guarantee the interoperability between

ORB's from di�erent vendors, CORBA speci�es the

Internet Inter-ORB Protocol (IIOP). IIOP de�nes the

transfer syntax and a set of message formats for ORB

interoperation just as an IDL interface de�nes the pro-

tocol between an object and its clients.

4 Conclusion

In order to validate the new concept for communi-

cation, based on the choice of CORBA, a pilot im-

plementation is currently under development. It is

to test the techniques of integrating EMS and will

have reduced but basic functionality of a VED. In a

later stage this interface will be enlarged to enable full

control and set-up from the experiment-workstation,

whereas for the transfer of experiment data high band-

width connections between servers are further on used.

Most implementations of CORBA do not consider

security mechanisms. Thus, servers are usually open

to general access without additional authorization che-

cks, which is not acceptable in experiment control. An

additional server, a socalled 'System' server, has been

introduced for this purpose. It manages users access to

the system and keeps track of their individual author-

ities. Furthermore, it provides the necessary adresses

of VEDs in the system.

As CORBA implementation, the freely available

omniORB-distribution [8] is used. omniORB is a mul-

tithreaded Object Request Broker, which is compliant

to the IIOP protocol. It supports a simple C++ map-

ping of IDL interfaces, which allowed us to implement

�rst versions of servers in a rather short time.

References

[1] K.Zwoll, M.Drochner, W.Erven, J.Holzer,

H.Kopp, H.-W.Loevenich, P.W�ustner,

K.H.Watzlawik, N.Brummund, M.Karnadi,

R.Nellen, J.Stock, S.Dienel, K.H.Leege,

W.Oehme, "Flexible Data Acquisition System for

Experiments at COSY", IEEE Trans.Nucl.Sci.,

Vol 41, No. 1, pp 37-44, 1994

[2] ISO9506 - Manufacturing Message Speci�cation,

International Organisation for Standardization

[3] Pro�bus Application Layer (FMS, FM7,

and LLI), DIN19245

[4] M.Drochner, W.Erven, P.W�ustner, K.Zwoll,

"The Second Generation of DAQ-Systems at

COSY", IEEE Real Time Conference 97, Beaune,

France, September 1997

[5] CORBA 2.0/IIOP Speci�cation, document 97-

02-25, http://www.omg.org/corba/corbiiop.htm

[6] G.Kemmerling, M.Korten, H.Kleines, K.Zwoll,

C.Balke, M.Ephra��m, M.Koopmans, C.T.A.M.de

Laat, W.Lourens, E.van der Meer, J.Venema,

W.Kooijman, A.A.M.Oomens, F.Wijnoltz, "Re-

mote Experiment Monitoring and Control at the

TEXTOR 94 experiment", IEEE Real Time Con-

ference 97, Beaune, France, September 1997

[7] homepage, http://www.omg.org

[8] ORL homepage,

http://www.orl.co.uk/front.html


